ν_{μ} appearance measurement in a SK-like detector for a beta-beam

Chizue ISHIHARA ICRR, Univ. of Tokyo 2009 Mar. 23 EUROnu Annual meeting @ CERN, Geneva

introduction

- Pure v_e or $\overline{v_e}$ beam could be produced at the Betabeam facility.
- The golden signal is a v_{μ} appearance channel.
- Because the beam contains only one type neutrino, it is not necessary to identify the charge. Therefore, a very massive Water Cherenkov detector could be a good candidate as the far detector.
- Here, we studied the efficiencies and the backgrounds of ν_µ appearance in a Water Cherenkov detector with the proposed beta beams, based on our experiences of the Super-Kamiokande (SK) analysis.

Beta-beam facility

- Beta-beam facility is determined by following;
 - Type of ion (E₀)
 - Relativistic γ(=E/m) of ion
 - Baseline L
- L/Ev should be near the oscillation maximum
 - LE: γ =100, L=130km (ex. CERN \rightarrow Frejus)
 - HE: γ =350, L=700km (ex. CERN→Gran-Sasso) 1200

Choice of isotope

- CERN-SPS $: \gamma(\text{He}) \le 150, \gamma(\text{Ne}) \le 250$
- Refurbished SPS: γ (He) \leq 350, γ (Ne) \leq 580 → choose He and Ne
- 1 year operation= 2.9×10^{18} decays (He) = 1.1×10^{18} decays (Ne)

We assume these 4 beta-beam setups

Neutrino measurement in Super-Kamiokande

- 1. Detection of a Cherenkov ring of a lepton produced by the neutrino interaction
- 2. Identification of particle type (e or μ) by the ring pattern
- 3. Reconstruction of the lepton momentum with the observed charge

Momentum threshold

	Cherenkov radiation	Analysis threshold		
electron	0.57 (MeV/c)	100 (MeV/c)		
muon	118 (MeV/c)	200 (MeV/c)		
proton	1 (GeV/c)			

Performance of the detector

Overview of this study

This study aims to understand the detection efficiencies and the backgrounds of ν_{μ} appearance from beta-beam in the Water Cherenkov detector.

The study is based on the current SK Monte-Carlo simulation and the analysis tools.

contents

- Expected v flux from beta-beam
- Event selection's performance
 - single-ring selection
 - Particle identification selection (PID)
 - Decay electrons selection
- About background

Expected neutrino energy spectra in WC 1Mton-year (flux*cross-section)

Event selection

- To reject cosmic-ray and low energy events, applying the standard selections (FVFC):
 - Fully-contained selection
 - vertex in the fiducial volume
 - visible energy > 30MeV
- from LE v_e beam from HE v_e beam x 10 35000 1600 Total 30000 1400 CCQE 1200 25000 1000 20000 800 15000 600 10000 400 CC non-QE 5000 200 NC 0.25 0.5 0.75 0.2 0.3 0.4 0.6 0.7 0.8 0.9 true neutrino energy (GeV) after FVFC selection
- the selection to find CCv_{μ} events:
 - 1. single-ring
 - **2.** μ -like ring
 - 3. with 1 decay electron

Event selection 1: single-ring

- "single-ring" selection is to select CCQE events.
- The efficiency for identifying
 CCQE events as single-ring is
 94.2% for atm v.

Ring counting technique

- Ring candidate search
- Hough transformation method
- Ring candidate test
- likelihood method

single-ring selection probability

Event selection 2: µ-like ring

- Classification of the rings to two types by the likelihood method using the differences in the patterns and the opening angles
- The misidentification
 probabilities are ~1% for
 atmospheric v_e and v_µ
 CCQE events.

μ-like selection probability

Event selection 3: with 1 decay electron

- Selection of with 1 decay-e is to increase the fraction of CCQE interactions and to reduce backgrounds, NCv_u, NCv_e and CCv_e.
- The efficiency of detecting decay-e are 80% for μ^+ and 63% for μ^- .

Decay electron selection probability

Summary of event selection

Summary of the event selection efficiencies(probabilities) for CC ν_{μ} in each beam

event selection efficiencies (probabilities)

	LE b	LE beam		eam
	$CC \overline{\nu_{\mu}}$	CC v_{μ}	$CC \overline{v_{\mu}}$	CC v_{μ}
FC,FV,evis	100 %	100 %	100 %	100 %
1-ring	96.6	95.8	79.6	68.0
μ-like	95.7	95.1	98.8	97.6
🖕 1 decay-e	81.4	65.2	66.7	54.8
Final sample	75.3	59.4	52.5	36.4

Backgrounds in final sample

Reconstructed neutrino energy distribution

Optimization of PID selection

The current cut parameter on PID is for classification for atmospheric neutrino, v_e and v_{μ} .

 \rightarrow change the threshold to maximize the signal to BG ratio

Reconstructed energy & new PID selection

The selection efficiency and the ratio signal to BG in each cut:

- 1. SK selection only
- 1 & Reconstructed Energy cut (E<0.3GeV for LE, E<1GeV for HE)
- 3. 1 & New PID cut (threshold = 2.0)
- 4. 2&3

	LE ν_{e}	beam	HE ν_e	(sin ²	
cut	Eff. (%)	SIG/BG	Eff. (%)	SIG/BG	
1	59.4	2.0	36.4	0.2	
2	52.1	4.0	22.1	1.2	
3	40.8	3.1	32.3	0.3	
4	35.3	9.0	21.0	* 1550	

 $(\sin^2 2\theta_{13} = 0.01)$

* due to the limited statistics of Monte-Carlo simulation, these values have ~60% statistical errors

 \rightarrow The recon.E cut added new PID cut is effective for SIG/BG.

summary

- The selection efficiencies for CC $\nu\mu$ are :
 - 75.3% (ν), 59.4% (ν) from LE beam
 - **52.5% (ν)**, 36.4% (ν) from HE beam.
- Small fraction of BG in the LE beams is expected.
- For HE beams, NC_{Ve} (mainly NC charged π production) could be the dominant background. The remaining events after the selection are :
 - 0.92% (ν), 1.79% (ν) from LE beam
 - 1.99% (ν), 5.05% (ν) from HE beam.
- CC v_e BG events after the selection for all beam sets are less than 0.1%.
- If the statistics of v_{μ} signal is low like in case of sin²2 θ_{13} =0.01, the ratio of signal to BG is very low.
- There is much possibility to distinguish the signal from BG by using optimized PID selection and reconstructed energy.

Backup

Performance of the detector (1)

Mis-ID (for atm. v)

Expected CC signal and selections

Open reconstructed muon momentum (CC events, FVFC)

Hatch after selection Selection criteria;

- 1. single-ring
- 2. μ -like ring
- 3. with 1-decay electron

Expected electron spectrum

Open reconstructed e momentum (Fiducial Volume)
Hatch after selection
Selection criteria;
1-ring
e-like ring
Decay-e=0

Reconstructed energy & new PID selection

The selection efficiency and the ratio signal to BG in each cut:

- 1. SK selection only
- 1 & Reconstructed Energy cut (E<0.3GeV for LE, E<1GeV for HE)
- 3. 1 & New PID cut (threshold = 2.0)

```
4. 2&3
```


$(\sin^2 2\theta_{13} = 0.01)$

	LE $\overline{\nu_{e}}$	beam	LE v_e beam		HE $\overline{\nu_{e}}$ beam		HE v_{e} beam	
cut	Eff. (%)	SIG/BG	Eff. (%)	SIG/BG	Eff. (%)	SIG/BG	Eff. (%)	SIG/BG
1	75.3	5.5	59.4	2.0	52.5	0.7	36.4	0.2
2	62.5	** ~104	52.1	4.0	37.0	* 2044	22.1	1.2
3	49.7	3.6	40.8	3.1	48.6	1.4	32.3	0.3
4	40.7	** ~10 ⁶	35.3	9.0	35.9	* 1980	21.0	* 1550

*(**) due to the limited statistics of Monte-Carlo simulation, these values have ~60(400)% statistical errors

 \rightarrow The recon.E cut added new PID cut is effective for SIG/BG of HE beam.

