IDS-NF: FFAG Status

J. Scott Berg Brookhaven National Laboratory IDS-NF Accelerator WG Status Update 7 July 2009

Outline

- Injection and extraction
- Base lattice update
- Orbit distortion from special magnets
- Chromaticity correction

Injection and Extraction (Pasternak, Kelliher, Aslaninejad)

- Injection and extraction done for FODO
- Vertical chosen for all
 - Low beta functions horizontally: by design!
- At least 6 kickers needed
- 01.4 m kicker length
- \circ Desire kicker field < 0.1 T
- Share kickers for two signs
- Trajectories require larger aperture magnets

Injection and Extraction Parameters

	Inject 6	Inject 10	Extract
Kickers	6	10	6
Kicker field (T)	0.12	0.08	0.10
Septum field (T)	2.5	2.5	4.0

Injection Trajectories

Extraction Trajectories

Triplet Extraction (Kelliher)

Extraction for triplet case Two cavity per cell, long drift 2.4 m kickers

\odot 3 kickers, fields under 0.1 T

02 T septum, 2 cm clearance

Triplet Extraction

Injection and Extraction Future Work

Finish triplet configuration Vary kicker strengths, keeping symmetry

Base Lattice Update (Berg)

- \circ More free drifts for kickers/septa [(6+2) × 2]
 - Kickers shared between signs, not septa
- O 4 free drifts for random hardware
- Multiple of 4 cells (symmetry)
- Total 20 free drifts
- Don't add unnecessary drifts

Large transverse amplitude: average gradient important

Base Lattice New Parameters

BROOKHAVEN

FCDC FCDC FDFCC FDFCC

Cells	62	68	55	60
D radius (mm)	95	94	125	102
D field (T)	7.6	6.4	7.3	7.9
F radius (mm)	207	200	167	144
F field (T)	3.4	3.1	3.9	4.0
Avg. Grad (MV/m)	3.3	2.8	2.8	2.6
turns	8.7	9.0	10.6	13.0
Length (m)	462	521	445	393
Cost (A.U.)	176	170	181	155

Base Lattice New Parameters

	FDFC	FDFC
Cells	70	80
D radius (mm)	92	87
D field (T)	7.7	7.0
F radius (mm)	122	115
F field (T)	4.2	4.0
Avg. Grad (MV/m)	1.9	1.6
turns	16.2	17.3
Length (m)	422	479
Cost (A.U.)	144	142

Base Lattice Analysis

 Triplet and FODO only Symmetry for injection/extraction New lattices have modestly lower cost □ More turns Large effect in two-cavity triplet Penalty is lower average gradient Increases problems from transverse amplitude

Base Lattice Small Corrections to Make

Correct for asymmetric time of flight
Average over transverse amplitudes
Integer harmonic of RF frequency
Integer plus half turns
Maybe fewer drifts for triplet?
Expect very small changes

Orbit Distortion from Special Magnets (Kelliher)

- Beam goes outside magnet aperture in injection/extraction region
- Need special magnets
- Different field profile
- Change fringe field extent (Zgoubi)
- Accelerated orbit distortion: 1 cm

Beam in Special Magnets

Accelerated Orbit Distortion

Chromaticity Correction (Machida)

- Sextupole components: correct chromaticity
 - Fix time of flight dependence on transverse amplitude
- Dynamic aperture reduced significantly
- Partially correct: improve dynamic aperture
 Drop in dynamic aperture: 1/3 resonance
 Dynamic aperture further reduced with errors
 Increased aperture: compute cost

Tune With and Without Chromaticity Correction

Dynamic Aperture vs. Chromaticity Correction

Dynamic Aperture with Errors

Insertions (Machida)

- Want longer drifts for injection/extraction
- Chromaticity correction makes insertions work better
- Even seem to work with partial correction (70%)
 Won't work without chromaticity correction
 Hurts dynamic aperture very little

Magnet Discussion

Little advantage in combined-function winding
 Proposed earlier in Japan: verify
 Helical winding can avoid end multipoles
 Need to start looking at hardware
 Especially kickers

