Neutrinos as Probe of new Physics

M. Lindner

Max-Planck-Institut für Kernphysik, Heidelberg

Neutrino Sources

M. Lindner

Different Routes Beyond the SM

M. Lindner

Adding Neutrino Mass Terms

1) Simplest possibility: add 3 right handed neutrino fields

NEW ingredients, 9 parameters -> SM+

M. Lindner

Other effective Operators Beyond the SM

→ effects beyond 3 flavours
 → Non Standard Interactions = NSIs → effective 4f opersators

$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(ar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(ar{f}_L\gamma_{
ho}f_L)$$

• integrating out heavy physics (c.f. $G_F \leftarrow \Rightarrow M_W$)

$$|\epsilon| \simeq \frac{M_W^2}{M_{NSI}^2}$$
 f

Suggestive See-Saw Features

QFT: natural value of mass operators ←→ scale of symmetry

 $m_D \sim$ electro-weak scale $M_R \sim L$ violation scale \bigstar ? \Rightarrow embedding (GUTs, ...)

Numerical hints:

For $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim leptons \Rightarrow M_R \sim 10^{11} - 10^{16} \text{GeV}$ $\Rightarrow v$'s are Majorana particles, m_v probes $\sim \text{GUT scale physics!}$ \Rightarrow smallness of $m_v \Leftarrow \Rightarrow$ high scale of I_{\prime} , symmetries of m_D , M_R

2nd Look Questions

Quarks & charged leptons → hierarchical masses → neutrinos?

- correlated hierarchy in M_R ? \rightarrow theoretically connected!
- mixing patterns: not generically large, why almost maximal, θ_{13} small?

Parameters for 3 Light Neutrinos

mass & mixing parameters: m_1 , Δm_{21}^2 , $|\Delta m_{31}^2|$, sign(Δm_{31}^2)

Four Methods of Mass Determination

- kinematical
- lepton number violation
 ←→ Majorana nature
- astrophysics & cosmology
- oscillations

θ₁₃ Sensitivity Versus Time

Implications of Precision

Precision allows to identify / exclude:

- special angles: $\theta_{13} = 0^{\circ}$, $\theta_{23} = 45^{\circ}$, ... $\leftarrow \rightarrow$ discrete f. symmetries?
- special relations: $\theta_{12} + \theta_C = 45^\circ$? $\leftarrow \rightarrow$ quark-lepton relation?
- quantum corrections **< >** renormalization group evolution
- ...

→ unique & complimentary information

→ test ideas about the origin of flavour

Provides also measurements / tests of:

- MSW effect (coherent forward scattering and matter profiles)
- cross sections
- 3 neutrino unitarity ← → sterile neutrinos with small mixings
- neutrino decay, decoherence, NSIs, MVN, ...
- → various synergies with LHC and LFV

Learning about Flavour

Next: Smallness of θ_{13} , θ_{23} **maximal**

- models for masses & mixings
- input: known masses & mixings
 - \rightarrow distribution of θ_{13} predictions
 - $\rightarrow \theta_{13}$ expected close to ex. bound
 - → well motivated experiments

what if θ_{13} is very tiny? or if θ_{23} is very close to maximal?

- numerical coincidence unlikely
 special reasons (symmetry, ...)
- → answered by coming precision

The larger Picture: GUTs

GUT Expectations and Requirements

Quarks and leptons sit in the same multiplets

- → one set of Yukawa couplings for given GUT multiplet
- \rightarrow ~ tension: small quark mixings $\leftarrow \rightarrow$ large leptonic mixings
- → this was in fact the reason for the `prediction' of small mixing angles (SMA) ruled out by data

Mechanisms to post-dict large mixings:

- → sequential dominance
- → type II see-saw
- → Dirac screening
- → ...

Flavour Unification

- so far no understanding of flavour, 3 generations
- apparant regularities in quark and lepton parameters
- → flavour symmetries (finite number for limited rank)
- → symmetry not texture zeros

Examples:

GUT \otimes Flavour Unification

→ GUT group ⊗ flavour group

<u>example:</u> SO(10) \otimes SU(3)_F

- SSB of SU(3)_F between Λ_{GUT} and Λ_{Planck}
- all flavour Goldstone Bosons eaten
- discrete sub-groups survive ←→SSB e.g. Z2, S3, D5, A4
 - ➔ structures in flavour space
 - ➔ compare with data

 $\mbox{GUT}\otimes\mbox{flavour}$ is rather restricted

←→ small quark mixings *AND* large leptonic mixings ; quantum numbers

 \rightarrow so far only a few viable models

Cai and Yu, Hagedorn, ML and Mohapatra, Chen and Mahantappa, King, Ross

→ rather limited number of possibilities; phenomenological success non-trivial

→ aim: distinguish models further by future precision

Aims & Questions

- Precise angles, phases and masses!
- Potential for other physics?
- Surprises?

θ_{13} and Leptonic CP Violation

<u>road map for</u> : sin²2θ₁₃ → importance of Double Chooz

<u>assume:</u> $\sin^2 2\theta_{13} = 0.1$, $\delta = \pi/2 \rightarrow \text{combine:}$ T2K+NOvA+Reactor

M. Lindner

Simulation Tools

very powerful tool

GLoBES & Co

General Long Baseline Experiment Simulator

http://www.mpi-hd.mpg.de/~globes

P. Huber, J. Kopp, ML, W. Winter

Realistic simulations (event rate based; including realistic experimental aspects):

- → full 3v oscillation formalism in matter
- → widely used (on-going ISS/IDS study)
- → further improvements
- → test & compare new ideas
- → library of most existing experiments → play!
- → identify R&D issues, cost gradients, ...
- → extensions beyond 3flavour LBL oscillations
- → include NSIs into simulations

M. Lindner

NSIs & Oscillations

Future precision oscillation experiments:

- must include full 3 flavour oscillation probabilities
- matter effects
- define sensitivities on an event rate basis

	Source	\otimes	Oscillation	\otimes	Detector	
- neutr - flux a - flavo - conta - symn	rino energy E and spectrum ur composition amination netric $\nu/\overline{\nu}$ operat	ion	 oscillation channel realistic baselines MSW matter pro degeneracies correlations 	els file	 effective mass threshold, response particle ID (and the second secon	ss, material solution flavour, charge, truction,) t low E)
	<u>preci</u> new (<u>sion</u> effec	<u>experiments i</u> ets bevond osci	<u>nigh se</u> llations	<u>e</u> !	

NSI Operators

Good reasons for physics beyond the SM+ (with v's)
 → expect effects beyond 3 flavours in many models
 → effective 4f interactions

$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(\bar{\nu}_{Leta} \ \gamma^{
ho} \ \nu_{Llpha})(\bar{f}_L\gamma_{
ho}f_L)$$

• integrating out heavy physics (c.f. $G_F \leftarrow \Rightarrow M_W$)

$$|\epsilon| \simeq \frac{M_W^2}{M_{NSI}^2}$$

Grossman, Bergmann+Grossman, Ota+Sato, Honda et al., Friedland+Lunardini, Blennlow+Ohlsson+Skrotzki, Huber+Valle, Huber+Schwetz+Valle, Campanelli+Romanino, Bueno et al., Kopp+ML+Ota, ...

NSIs interfere with Oscillations

<u>note:</u> interference in oscillations $\sim \epsilon \quad \bigstar \quad FCNC \text{ effects } \sim \epsilon^2$

Physics Potential with NSIs included

Simulations

- full osciallation framework with NSIs included

→ 4 possibilities for flavour transition:

- Oscillation
- NSI operator at source
- NSI operator at detectorNSI effects in propagation

no L/E dependence

Important: sensitivity limit from few events (small statistics)

- → no capability to resolve characteristic L/E dependence of oscillation
- → potential misinterpretation of NSI flavour transition effects

Potential consequences:

- offsets in parameter determinations
- conflicting data

NSI: Offset and Mismatch in θ_{13}

Kopp, ML, Ota, Sato

Relevant NSI Operators

$$\mathcal{L}_{\mathsf{NSI}} = \mathcal{L}_{V\pm A} + \mathcal{L}_{S\pm P} + \mathcal{L}_{T}$$

General Lorentz and flavour structure

$$\mathcal{L}_{V\pm A} =$$

$$\frac{G_F}{\sqrt{2}} \sum_{f,f'} \tilde{\epsilon}^{s,f,f',V\pm A}_{\alpha\beta} \left[\bar{\nu}_{\beta} \gamma^{\rho} (1-\gamma^5) \ell_{\alpha} \right] \left[\bar{f}' \gamma_{\rho} (1\pm\gamma^5) f \right]$$

$$+ \frac{G_F}{\sqrt{2}} \sum_{f} \tilde{\epsilon}^{m,f,V\pm A}_{\alpha\beta} \left[\bar{\nu}_{\alpha} \gamma^{\rho} (1-\gamma^5) \nu_{\beta} \right] \left[\bar{f} \gamma_{\rho} (1\pm\gamma^5) f \right]$$

$$+ \text{h.c.}$$

$$\mathcal{L}_{S\pm P} = \frac{G_F}{\sqrt{2}} \sum_{f,f'} \tilde{\epsilon}^{s,f,f',S\pm P}_{\alpha\beta} \left[\bar{\nu}_{\beta} (1+\gamma^5) \ell_{\alpha} \right] \left[\bar{f}' (1\pm\gamma^5) f \right],$$

$$\mathcal{L}_T = \frac{G_F}{\sqrt{2}} \sum_{f,f'} \tilde{\epsilon}^{s,f,f',T}_{\alpha\beta} \left[\bar{\nu}_{\beta} \sigma^{\rho\tau} \ell_{\alpha} \right] \left[\bar{f}' \sigma_{\rho\tau} f \right].$$

Source Detector $\ell_{\alpha} = \mu$ $\ell_{\alpha} = \mu$ $\ell_{\alpha} = e$ $\ell_{\alpha} = \tau$ $\ell_{\alpha} = e$ $\ell_{\alpha} = \tau$ V - Ano μ production no τ production no μ production no τ production V + Ano μ production no μ production no τ production no τ production S - Pstrong constraints no μ production no τ production no μ production no τ production strong constraints S + P strong constraints no μ production no τ production no τ production strong constraints no μ production Tno τ production no τ production strong constraints no μ production strong constraints no μ production

Reactor source and detector (f = u, f' = d)

Superbeam source and detector (f = u, f' = d)

	Source			Detector		
	$\ell_{\alpha} = e$	$\ell_{\alpha} = \mu$	$\ell_{\alpha} = \tau$	$\ell_{\alpha} = e$	$\ell_{\alpha} = \mu$	$\ell_{\alpha} = \tau$
V-A	no e production	√	no τ production	 ✓ 	\checkmark	no τ detection
V + A	no e production	✓	no τ production	\checkmark (mild supp.)	√(mild supp.)	no τ detection
S-P	no e production	√	no τ production	strong constraints	chiral supp.	no τ detection
S + P	no e production	✓	no τ production	strong constraints	chiral supp.	no τ detection
T	no e production	no P -odd part	no τ production	strong constraints	chiral supp.	no τ detection

Propagation (f = e, u, d)

V-A	1
V+A	\checkmark

Very important for NF & β-beam
See talks by S.Uchinami , J. Kopp

Neutrino-less Double β-Decay

- cosmology: systematical errors → ~another factor 5?
- $0\nu\beta\beta$ nuclear matrix elements ~factor 1.3-2 theoretical uncertainty in m_{ee}
- $\Delta m^2 > 0$ allows complete cancellation $\rightarrow 0\nu\beta\beta$ signal not guaranteed
- $0\nu\beta\beta$ signal from *some other* new BSM lepton number violating operator
 - very promising interplay of cosmology, other mass determinations (KATRIN), LHC, LVF experiments and theory

GERDA Construction

Vacuum-insulated double wall stainless steel cryostat

→ data taking 2009

<u>alternatives:</u> LR, RPV-SUSY, ... → other *L* operators ← → NSI's

Schechter+Valle:

L violating operator \rightarrow radiative mass generation \rightarrow Majorana nature of v's However: This may only be a tiny correction to a much larger Dirac mass term

Lepton Flavour Violation

- Majorana neutrino mass terms
- •••
- R-parity violating supersymmetry Hall+Kosteleck+Rabi, Borzumati+Masiero, Hisano+Tobe, Casas+Ibarra, Antusch+Arganda+Herrero+Teixeira, Joaquim+Rossi, ...
- →LFV and leptonic CP violation can even exist for m_v→0
- → e.g. modifications of correlation
 between μ⁻ → e⁻γ decay and
 nuclear μ⁻ → e⁻ conversion
 MEG: 10⁻¹³
 PRISM: 10⁻¹⁸
- →<u>interplay:</u> v's LFV LHC in the coming years

M=1TeV, best fit oscillation paramaters

Deppisch+Kosmas+Valle

Conclusions

- neutrino physics very promising

 unique information
 - insights into various sources
 - unique particle physics properties
- first solid particle physics beyond the standard model
 - there are more parameters
 - explicit fermion mass terms
 - L violation
- future: precision neutrino physics
 - very precise measurements **→** potential for surprises!
 - NSIs: offsets and mismatch possible **>** precise & redundant measurements
 - good potential for synergies with LHC and LFV physics
- interpreting flavour structures ← → origin of flavour
 - flavour symmetries GUTs SUSY
 - ...many fancier ideas

very good motivation for future neutrino beams