Project X and the Neutrino Factory

Steve Holmes

IDS-NF Meeting June 11, 2008

Strategic Context Fermilab Long Range Plan

- Fermilab is the sole remaining U.S. laboratory providing facilities in support of accelerator-based Elementary Particle Physics.
- The Fermilab long-term plan incorporates three strategic directions:

IDS_NF Meeting, 6/11/08 – S. Holmes

Neutrino Program Evolution World View

- Long term physics goals:
 - Measure neutrino mass hierarchy
 - Measure complete neutrino mixing matrix, including CP-violating phase, δ
- How?
 - $sin^2 2\theta_{13}$ to $0.1 \rightarrow 0.01$: Double Chooz \rightarrow Daya Bay/T2K/NOvA
 - Mass hierarchy for $sin^2 2\theta_{13}$ to 0.02: NOvA + T2K
 - $sin^2 2\theta_{13}$ to 0.001: Project X/DUSEL
 - CP-violation for $sin^2 2\theta_{13}$ to few x 0.001: Project X/DUSEL
 - $sin^2 2\theta_{13}$ less than 0.001: NuFACT

Neutrino Program Evolution P5 Recommendations

- Intensity Frontier
 - The panel recommends a world-class neutrino program as a core component of the US program, with the long-term vision of a large detector in the proposed DUSEL and a high-intensity neutrino source at Fermilab.
 - The panel recommends an R&D program in the immediate future to design a multi-megawatt proton source at Fermilab and a neutrino beamline to DUSEL...
 - A neutrino program with a multi-megawatt proton source would be a stepping stone toward a future neutrino source, such as a neutrino factory based on a muon storage ring... This in turn could position the US program to develop a muon collider as a long-term means toreturn to the energy frontier in the US.

Project X Facility Overview

Project X is a high intensity proton facility aimed at supporting a world leading program in neutrinos and rare decays. NOvA initially,

IDS_NF Meeting, 6/11/08 – S. Holmes

Project X Facility Overview Provisional Siting

IDS_NF Meeting, 6/11/08 – S. Holmes

Page 6

Project X Facility Overview High Level Performance Goals

Linac		
Particle Type	H-	
Beam Kinetic Energy	8.0	GeV
Particles per pulse	5.6×10 ¹³	
Pulse rate	5	Hz
Beam Power	360	kW
Recycler		
Particle Type	protons	
Beam Kinetic Energy	8.0	GeV
Cycle time	1.4	sec
Particles per cycle to MI	1.7×10 ¹⁴	
Particles per cycle to 8 GeV program	2.2×10 ¹⁴	
Beam Power to 8 GeV program	206	kW
Main Injector		
Beam Kinetic Energy (maximum)	120	GeV
Cycle time	1.4	sec
Particles per cycle	1.7×10 ¹⁴	
Beam Power at 120 GeV	2300	kW

IDS_NF Meeting, 6/11/08 – S. Holmes

Project X Facility Overview Scope

- The Project X Facility scope includes:
 - A new 8 GeV, superconducting, H⁻ linac;
 - A new beamline for transport of 8 GeV H⁻ from the linac to the Recycler Ring;
 - Modifications to the Recycler required for 8 GeV H⁻ injection, accumulation, and delivery of protons to the Main Injector;
 - Modifications to existing beamlines to support transfer of 8 GeV protons from the Reycler to the Main Injector;
 - Modifications to the Main Injector to support acceleration and extraction of high intensity proton beams over the range 60-120 GeV;
 - Modifications to the NuMI facility to support operations at 2 MW beam power;
 - Modifications to the Recycler to support a new extraction system that will allow delivery of 8 GeV protons in support of a dedicated flavor program.

Project X RD&D Plan

- The goal of the RD&D program is to provide support for Critical Decision 2 (CD-2) in 2011, leading to 2012 construction start.
 - Design and technical component development;
 - Fully developed baseline scope, cost estimate, and schedule;
 - Formation of a multi-institutional collaboration capable of executing both the R&D plan and the follow-on construction project.
- The primary technical goal is a complete facility design that meets the needs of the US research program, as established via CD-0.
 - -2 MW of beam power over the range 60 120 GeV,
 - Simultaneous with at least 100 kW of beam power at 8 GeV
 - Compatibility with future upgrades to >2 MW at 8 GeV

Project X RD&D Plan Strategy

- Working backwards (potential delay if/when FY2009 CR):
 - FY12: CD-3 Start Construction
 - FY11: CD-2 Establish Baseline
 - FY10: CD-1 Establish Baseline Range
 - Requires a complete Conceptual Design Report
 - FY09 (spring): CD-0
 - Requires new cost (range) estimate which will be reviewed by DOE
- FY2008 Goals
 - Establish basic performance parameters
 - Develop design concept sufficient to from basis of a cost estimate
 - Understand how/if the linac could support a 2+ MW upgrade
 - Form Project X RD&D Collaboration and establish work assignments for FY09

Project X RD&D Plan Relationship to Other Programs: ILC/SRF

- Project X design concept aligns beam parameters with ILC:
 - $-9 \text{ mA} \times 1 \text{ msec} \times 5 \text{ Hz}$
 - Alternatives under consideration may provide enhanced performance and/or flexibility
 - Linac designed to accommodate accelerating gradients in the range 23.6 31.5 MV/m (XFEL ILC)
 - Final design gradient determined prior to CD-2
- Industrialization role
 - Project X requires 37 β =1, ILC-like cryomodules
 - Production over a two-to-three-year period represents a significant advance over capabilities anticipated in ~2010; however, the production rate is below that required by ILC
 - \Rightarrow This activity could represent the initial phase of an industrialization buildup for ILC (in the U.S.).

Project X RD&D Plan ILC/SRF Joint Development Strategy

- There is a single 1.3 GHz development program at Fermilab, supporting the ILC/GDE program and simultaneously understanding Project X requirements.
- At an appropriate time (before CD-2) the Project X cryomodule design will be developed.
 - The expectation is that it will be similar, but not identical, to the ILC design (including choice of gradient).
 - The design will be compatible with an identified upgrade path.
- Creation of facilities capable of fabricating one cryomodule/month remains the responsibility of the SRF infrastructure program.
- ILCTA-NML is being constructed under the SRF Infrastructure program to support beam testing of a complete rf unit.
 - This configuration supports substantial progress toward ILC (S1 and S2) goals: demonstration of stable high-power operations.

Project X RD&D Plan Relationship to Other Programs: HINS

- The HINS program is developing front end technology beyond the requirements of Project X initial goals:
 - 60 MeV front end @ 27 mA × 1 msec × 10 Hz
 - Demonstrate novel technologies for a high intensity non-relativistic linac
 - Multiple room temperature and sc cavities driven by a single rf source (high power vector modulators)
 - High speed (nsec) beam chopping at 2.5 MeV
 - Establish technical feasibility and cost basis by ~2011

Project X RD&D Plan HINS Joint Development Strategy

- HINS provides a natural starting point for a Project X upgrade
 - 27 ma \times 1 msec \times 10 Hz = 2 MW (if accelerated to 8 GeV)
 - Other options: 9 ma \times 3 msec \times 10 Hz
- Two decisions (prior to CD-2):
 - Do we use HINS as the initial front end or do we utilize a conventional (room temperature) front end?
 - Cost-benefit analysis
 - Can we establish an 8 GeV upgrade path via HINS and if so, how does this impact the 1.3 GHz linac facility design?
- In either case it will be essential to carry the 60 MeV facility through to completion

Project X RD&D Plan Integrated SRF Plan

<u> </u>	FY08	FY09	FY10	FY11	FY12	FY13
ILC C+CM	CM1	CM2	CM3 (Type IV	3)	CM4 rf unit sys.tst	
ILC RF Power		MBK n	PFN nodulator			
SRF Infra.				NML complete		CAF complete (1 CM/month)
HINS			be	60 MeV eam tests		
Project X		CDR	R FE Gradient base	decision decision line docs	rf unit sys.tst	
	CD-0		CD-1	CD-2	CD-3	3

IDS_NF Meeting, 6/11/08 – S. Holmes

Project X RD&D Plan Relationship to Other Programs: Neutrino Factory

- NF Proton Driver requirements as described by ISS:
- Project X in general <u>will not meet</u> requirements in <u>initial</u> <u>configuration</u>

Proton energy	10±5 GeV	8 GeV
Average beam power	4 MW	360 kW
Pulse rep rate	50 Hz	5 Hz
Proton bunch length (rms)	2±1 nsec	2 nsec*
Number of proton bunches	3 or 5	500 *
Sequential extraction delay	>17 µsec	>17 µsec*
Pulse duration (LHg target)	<40 µsec	>11 µsec*
Pulse duration (solid target)	>20	>11

* Based on accumulation within the Recycler Ring.

Project X RD&D Plan Neutrino Factory Joint Development Strategy

- Develop upgrade concept for the Project X linac aimed at >2 MW (currently underway)
 - Integrate necessary requirements into the initial (360 kW) design
- Develop a performance specification for a Proton Driver supporting a Neutrino Factory (APC), consistent with Project X concepts.
 - Issues: Average beam power, repetition rate, particles/bunch, bunch intensity
- Develop a conceptual design for the NF Proton Driver based on Project X linac <u>and</u> downstream accumulation/packaging ring(s).
- Coordinate with IDS_NF, NFMCC (, and MCTF)

Project X RD&D Plan Long Term Vision (R. Palmer)

A Phased Approach

Project X RD&D Plan Collaboration Plan

- Intention is to organize and execute the RD&D Program via a multi-institutional collaboration.
 - Goal is to assign collaborators complete and contained sub-projects, meaning they hold responsibility for design, engineering, cost estimating, and potentially construction if/when Project X proceeds.
 - Project X R&D Collaboration to be established via a Collaboration Memorandum of Understanding (MOU) outlining basic goals of the collaboration, and the means of organizing and executing the work.
 Goal: Establish RD&D Collaboration by end of FY08
 - It is anticipated that the Project X RD&D Program will be undertaken as a "national project with international participation". Expectation is that the same structure of MOUs described above would establish the participation of international laboratories.

Project X RD&D Plan Collaboration Plan

- A draft MOU covering the period through CD-2 is currently circulating for comment among the management of the following potential U.S. collaborators:
 - ANL
 - BNL
 - Cornell
 - LBNL
 - ORNL/SNS
 - MSU
 - TJNAF
 - SLAC
- Expect to hold initial Project X Collaboration Meeting in late summer/early fall

Summary

- Design concept exists for a facility capable of delivering in excess of 2 MW beam power over the energy range 60 – 120 GeV, simultaneous with 8 GeV beam power in the range 100 – 200 kW.
 - Major sub-system performance goals established
 - Design aligned with needs of ILC development
- RD&D plan developed covering the period through CD2 (2011)
 - Integrates effort on Project X, ILC, and HINS
 - Anticipates upgrade to >2 MW at 8 GeV
- Working towards organizing as a national project with international participation.
- Retain good communication with the NFMCC/MCTF to assure Project X is designed to preserve utility in a future muon facility.