IDS-NF Accelerator Working Group: Overview and Plans

J. Scott Berg Brookhaven National Laboratory IDS-NF Plenary Meeting 8 April 2010

- Specify the machine we describe in the IDR
 Specify any alternatives we will include, but
 Stay focused on making the case for the "baseline"
- Work out plans for the IDR
 What do we need to include there
 Important components to study

Neutrino Factory Accelerator Complex

- High-power proton driver, protons hit
- Target, producing pions decaying to muons
- Front end, reshapes and intensifies beam
- Acceleration, increase energy to 25 GeV
- Decay ring, neutrinos produced decay toward far detectors

Neutrino Factory Accelerator Complex

High-Power Proton Driver

Supply protons to target to produce pions

- Basic specifications:
 - □4 MW proton beam power
 - Proton kinetic energy 5-15 GeV
 - □ RMS bunch length 1–3 ns
 - □ 50 Hz repetition rate
 - \Box Three bunches, extracted up to 140 μ s apart

High-Power Proton Driver

- Rough plan: multiple site-specific designs
- Little work done so far
- Meeting goal
 - Define what will be done for IDR
 - Do we need to specify parameters more precisely?
 - Inter-bunch spacing
 - Bunch length

- Protons come in, pions come out
- Maximize production into the appropriate phase space
- Target sits in a 20 T magnetic field
- Baseline: mercury jet
- Significant engineering challenges
- Will solid targets be discussed in the IDR, and if so, how?

Target Recent Work

- Improving performance of Hg jet nozzle
- Study mercury collection pool
- Maximizing pion production efficiency
 - Comparing simulations with HARP data
- Radiation shielding for magnets
- Solid targets: experimental work
 - Simulating shock on tungsten rods
 Powder jet test

Front End

- Create beam suitable for acceleration and storage ring
 - Take single bunch from target, turn into bunch train (bunching and phase rotation)
 - Around 100 m long 200 MHz bunch train
 - $\diamond\pm50\%$ full momentum spread to $\pm20\%$
 - Maximize muons in accelerator acceptance
 Ionization cooling
 - Acceptance: 30 mm trans., 150 mm long.

Front End

- Greatest challenge: RF in magnetic fields
 - Front end channel has RF cavities in high magnetic fields
 - Experimental evidence: maximum RF
 gradient reduced in magnetic fields
 Don't give complete picture yet
 - Don't give complete picture yet
- Two broad ways to address
 - Change lattice magnetic field configuration
 Modify cavity to reduce breakdown

Front End Recent Work

- Improving performance of buncher/phase rotation
- Studies of low-frequency (44/88 MHz) scenario
- Stretched lattices that reduce magnetic field at cavities
- High-pressure hydrogen in cavities
- Ongoing experiments studying RF breakdown in magnetic field

Front End

Must choose front end technology to use
 Multiple choices
 Longest time allotted in WG
 Many technologies to choose from
 Making decision based on incomplete information

Acceleration

- Increase total energy from 244 MeV to 25 GeV
 Do this efficiently

 Maximize number of passes
 More passes difficult at lower energies
- Several stages to maximize efficiency
 - Start with linac
 - Recirculating linear accelerator (2)
 Fixed field alternating gradient accelerator

Acceleration Stages

Acceleration: Low Energy

 Recirculating linear accelerator (RLA) Few passes, limited by switchyard Two stages to get lower energy reach \circ Linac for lowest energy RLA won't work at lowest energy Proposal for scaling FFAG at lower energy □ Include in IDR, if so, how?

Low Energy Acceleration Recent Work

- Lattice specified
- Matching from cooling to accelerating linac
- Linac solenoid design
- Detailed tracking in linac
- Studies of scaling FFAG to 12.6 GeV

Harmonic number jump RF

Acceleration: FFAG

- Many passes since no switchyard
 Biggest challenge: injection/extraction
 Large aperture, fast rise/fall
 Similar to (but worse than) decay ring
- Beam dynamics limitation: time of flight depends on (large!) transverse amplitude, related to chromaticity
- Verify cost advantage over RLA

FFAG Acceleration Recent Work

- Update of lattice parameters
- Injection/extraction studies
 - Tracking studies of symmetry breaking in injection/extraction regions
- Settled on long-drift triplet lattice
- Chromaticity correction
 - More work to be done here
- Beam loading studies

Decay Ring

 Long straight sections where muons decay Straight angled downward to far detector Keep ratio of straight (useful) to arcs high Baseline: two racetrack shaped rings Neutrino beams to two detectors Discuss in-ring beam diagnostics Polarimeter: Cherenkov for distribution Joint with detector group

Decay Ring

Decay Ring Recent Work

- Lattice design fairly complete
- Particle tracking, finding good dynamic aperture
- Studies of polarimeter

Accelerator WG Plan

- Broken up by subsystems described previously
- Present baseline plans and anything additional to include in IDR
- Make the case for the baseline
- O Discuss what needs to go into IDR
- Leave time for discussion and debate
- Put together full picture for plenary

Accelerator WG Session Outline

Session 1	Proton Driver	1:00
Session 2	Front end	2:30
Session 3	Low energy acceleration	1:05
	Final FFAG acceleration	0:55
Session 4	Decay Ring	1:15
Session 5	Target	1:45

Special Discussion Points

- Proton driver: settle on a plan
- Front end: difficult decision here
- Decay ring: what diagnostics do we include
 Joint discussion with detector WG
 Target: if and how solid target is included

