

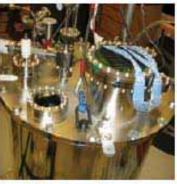
Liquid Argon R&D in the US

Bruce Baller Fermilab

Outline

- LAr TPC Basics
- The Integrated R&D Plan
- The Short Term Goal (LBNE LAr20)
- Argon purity
- On-wire electronics
- LAr TPC operation
- Summary

Need extremely good LAr purity, low convective flow


IDS-NF April 8, 2010

time

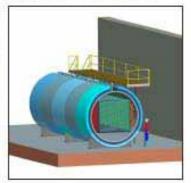
Liquid-Argon Time Projection Chambers Status of R&D Program in the US Leading to LAr20

The first TPCs in the United States:

Yale TPC

Location: Yale University Active volume: 0,00002 kton Year of first tracks: 2007

Bo


Location: Fermilab Active volume: 0.00002 kton Year of first tracks: 2008

ArgoNeuT

Location: Fermilab Active volume: 0.0003 kton Year of first tracks: 2008 First neutrinos: June 2009

MicroBooNE

Location: Fermilab Active volume: 0.1 kton Start of construction: 2010

Test stands to improve liquid-argon technology:

Luke

Location: Fermilab Purpose: materials test station Operational: since 2008

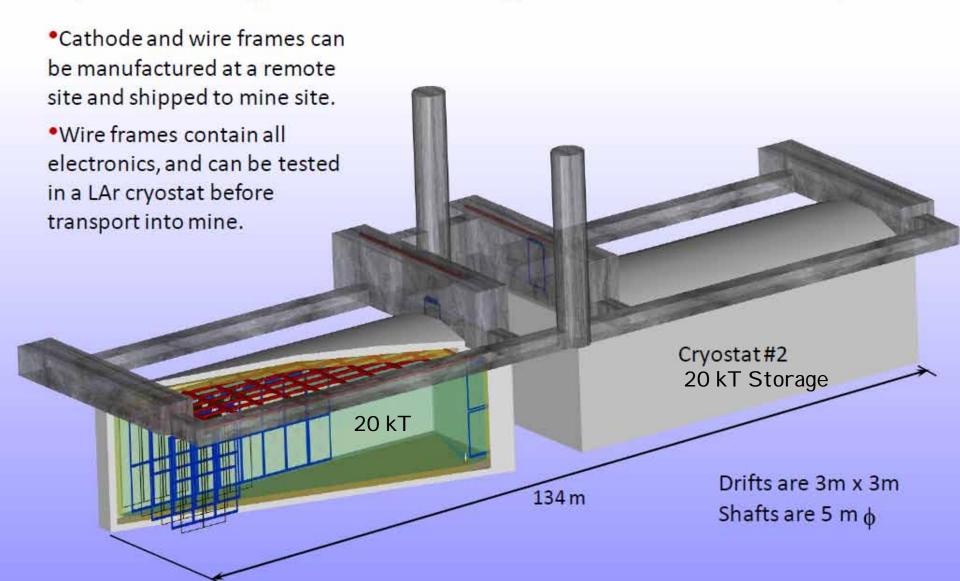
LAPD

Location: Fermilab Purpose: LAr purity demo Operational: 2010

Liquid-Argon Time Projection Chambers Outlook of R&D Program in the US

Yale TPC & Bo Yale TPC: Dismantled Bo: Operational	B	۸		0.00002 kton
ArgoNeuT Operational Physics: Measure neutrino-argon cross sections	(Ð		0.0003 kton
MicroBooNE Construction begins 2010 Physics: Investigate low-energy neutrino interactions	,		Ð	0.1 kton
LAr TPC for LBNE R&D in progress Physics: Measure neutrino oscillations at 1,000+ km			LAr20	20 kton
Final goal Replicate proven technology Physics: Search for CP violation in neutrino sector				N x 20 kton

Active Volume

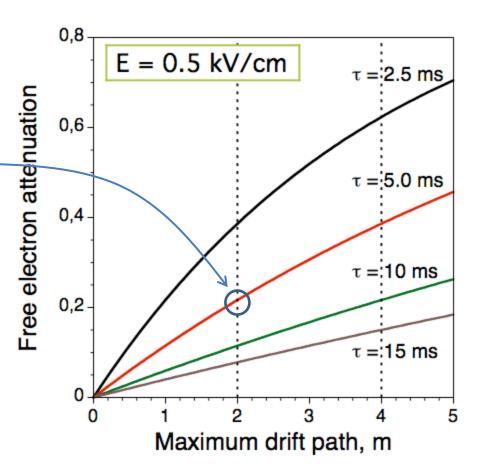

LBNE - Long Baseline Neutrino Experiment \$950M on 1 slide

- 10 year project
- CD-0 granted in mid January
- CD-0 Scope
 - 700kW proton beam (upgrade path to 2MW)
 - Neutrino beam (0.5 4 GeV)
 - Near detector
 - 1000+km baseline
 - 2 x 100kton Water Cherenkov Equivalent far detectors, for instance
 - 100kton WC
 - 16.7 kton LAr TPC **à** LAr20
- CD-1 review December 2010

Is this technology ready? Is it cost competitive, safe?

LAr20 Reference Design 3a

Cryostat #1 cut open to show assembly; drifts and shafts are transparent

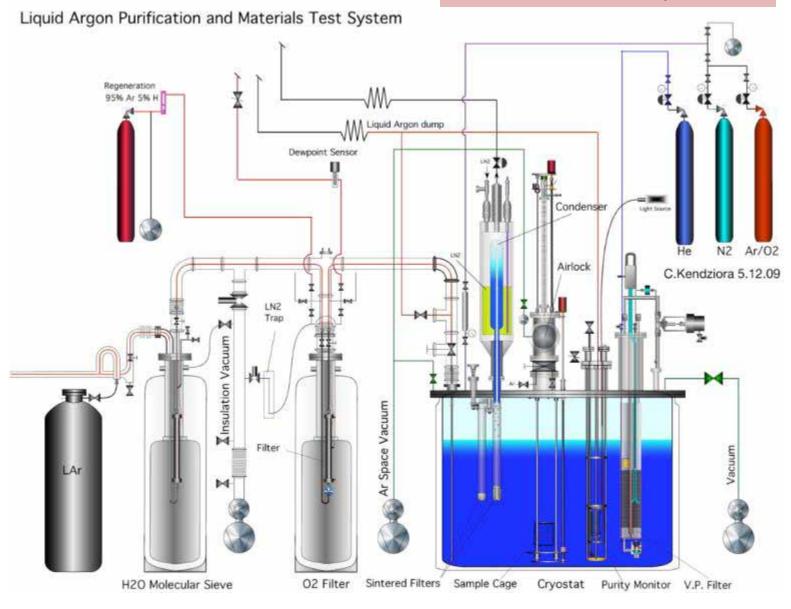


Main Challenges for Massive LAr TPCs

- LAr Purity in large industrial vessels
 - Materials qualification à Materials Test Stand
 - Purification techniques for non-evacuable vessels à LAPD
- Large scale low-noise, low-power readout (~500k channels)
 - On-Wire (cold) electronics and signal multiplexing à LAr20 R&D
- Underground issues: safety à LAr20
 - No cryostat penetrations in the liquid
- Cost à LAr20

Purity Requirement

- Electro-negative contaminants
 - O₂ & water
- If 20% signal loss is OK for 2m drift —
 - Need 5 ms electron lifetime ~60 ppt O₂ contamination
 - LAr supply typical 1 ppm
- N₂ < 1 ppm for light collection



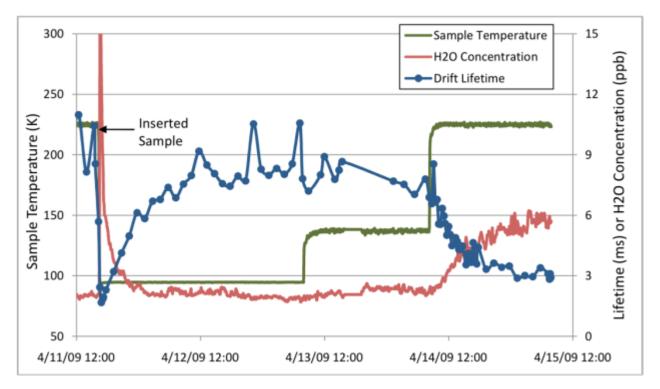
Test Stands (Bo & Luke)

IDS-NF April 8, 2010

Pordes, Kendziora, Tope (FNAL)

IDS-NF April 8, 2010

Materials Test Stand Features


- Can insert materials into known clean argon
- Can insert materials after purging only or after pumping on them.
- Can position materials into liquid and into ullage with range of temperatures
- Can insert known amounts of contaminant gases
- LN2 condenser can maintain liquid for long studies (weeks)
- Internal filter-pump can remove contamination introduced by materials 2hr cycle
- Sample points at Argon Source, after single-pass filters, in cryostat gas and liquid

Summary of Results

Material	Sample Surface	Elec	Effect of M ctron Drift	Comments	
	Area (cm ²)	94 K liquid	≈120 K vapor	≈225 K Vapor	
Red-X Corona Dope ^a	100	None	None	LT Reduced from 8 to 1 ms; recovery observed.	H ₂ O concentration not monitored.
Deactivated Rosin Flux ^b	200	None	Not Tested	Fested 8 to 1.5 ms recovery observed Not LT reduced from	H ₂ O concentration not monitored. Outgassed enough H ₂ O at 225 K to saturate sintered metal return.
FR4	1000	None	Not Tested		
Taconic ^c	600	None	Not Tested	LT reduced.	Sample outgases water at 225 K.
Hitachi BE 67G ^d	300	None	Not Tested	LT reduced; recovery observed	Sample outgases water at 225K; outgassing reduced over time.
TacPreg ^e	200	None	None	LT reduced; recovery observed	Sample outgases water at 225 K; outgassing reduced over time.
FR4, y-plane wire endpoint for uBooNE	225	None	None	LT reduced from 8 to 3 ms	Sample outgases water at 225 K.
FR4, y-plane wire endpoint for uBooNE	225	None	None	None	Sample was evacuated in airlock prior to testing
FR4, y-plane wire cover for uBooNE	225	None	None	None	Sample was evacuated in airlock prior to testing
Devcon 5-min epoxy	100	None	None	LT reduced from 10 to 6 ms; some recovery observed	Sample outgases water at 225 K.

Water Effects

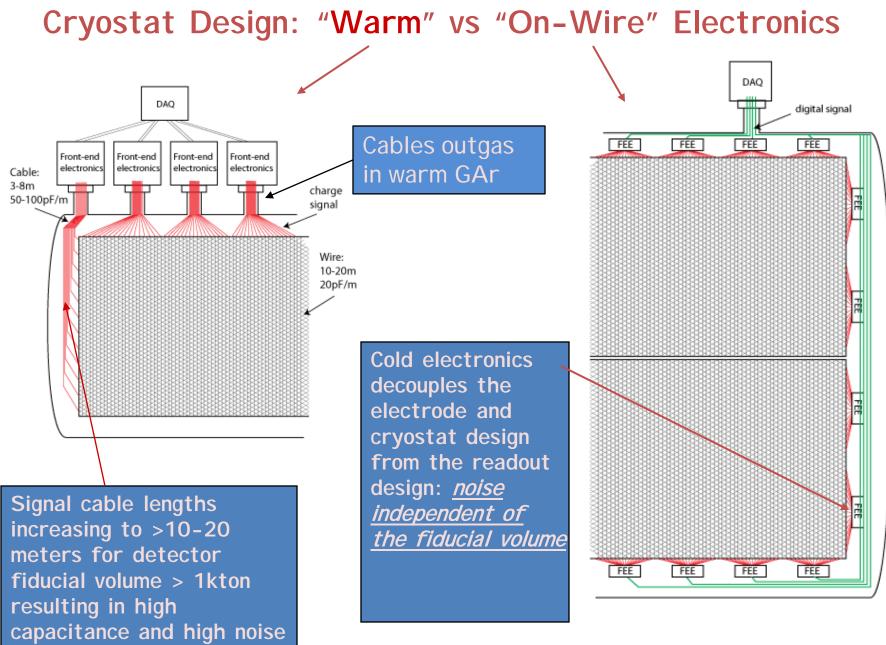
FR-4 based circuit board – from Argon lock with purging only

Significant change in H20 reading and significant reduction in lifetime

Water is the dominant contaminant, not O_2 , for lifetimes of 5 – 10 msec Not a contaminant if the materials containing it are maintained at ~100K

Purification in a Massive LAr TPC

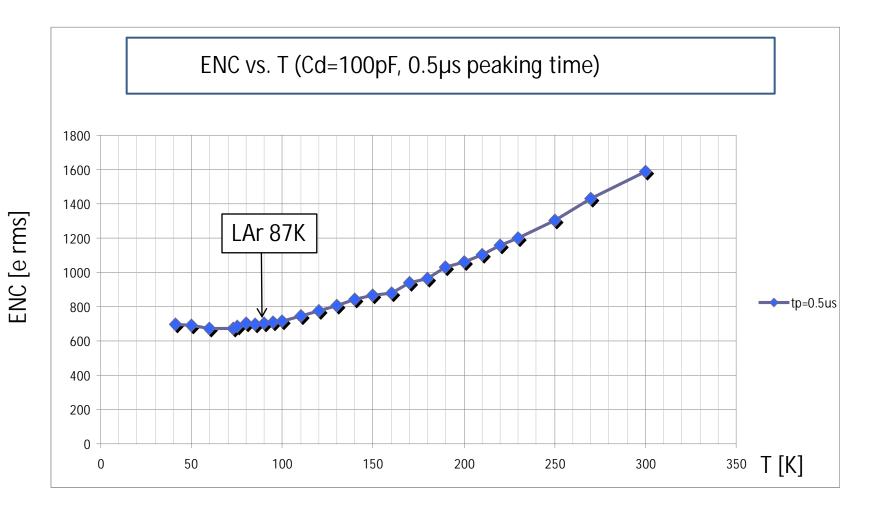
- Contaminants are in the vapor
 - Remove gas from top of cryostat continuously
- Removal rate proportional to the partial pressure difference of the water concentration in materials and the surrounding atmosphere
 - Hot dry argon gas <u>should be</u> as effective as evacuation in removing water (and O_2)
- Liquid Argon Purity Demonstrator (LAPD) will test this concept


LAPD

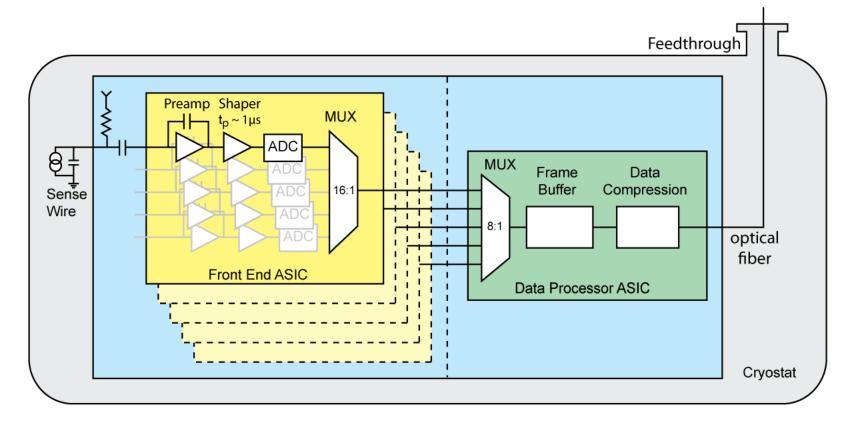
Brian Rebel, Rob Plunkett (FNAL)

- DETAIL D-DETAIL A--DETAIL C 「お開いた。現在の設計 HUPTING UP -25 8450 RU-TE SECTION U-U DETAIL B-10 feet
- Commercial SS tank & cryo system
- Steps
 - Remove air w gaseous argon (GAr) piston
 - Flush w GAr
 - 2.6 volumes à 100 ppm
 - Heat to 50°C
 - Recirculate GAr through purification system
 - Cool-down and fill w LAr
 - Check purity
- Results in Fall 2010

Cold Electronics


- Large detector (20m x 20m) à long cables to warm preamplifiers à high noise à cold electronics
- Minimize cables à on-wire amplification, digitization, zero suppression & multiplexing à cold ASIC
- Work by Radeka, Rescia (BNL), Yarema, Deptuch (FNAL), Edmunds (MSU)
 - Collaboration with Cressler (Georgia Tech)

IDS-NF April 8, 2010


Noise vs T in CMOS: Preliminary Test Result

Existing ASIC, not designed for LAr

CMOS in LAr has less than half the noise as that at room temperature

LAr20 Electronics

Cost = \$3.5M design & prototyping + \$4/channel (including ASICs, boards, feedthroughs)

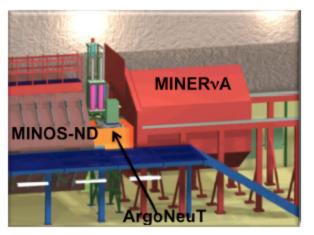
ArgoNeuT: Collaboration

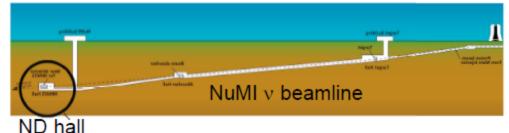
6 Institutions, 20 collaborators

F. Cavanna University of L'Aquila

B. Baller, C. James, G. Rameika, B. Rebel Fermi National Accelerator Laboratory

M. Antonello, R. Dimaggio, O. Palamara Gran Sasso National Laboratory

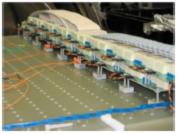

C. Bromberg, D. Edmunds, P. Laurens, B. Page Michigan State University


> S. Kopp, K. Lang The University of Texas at Austin

C. Anderson, B. Fleming, S. Linden, K. Partyka, M. Soderberg^{*}, J. Spitz Yale University

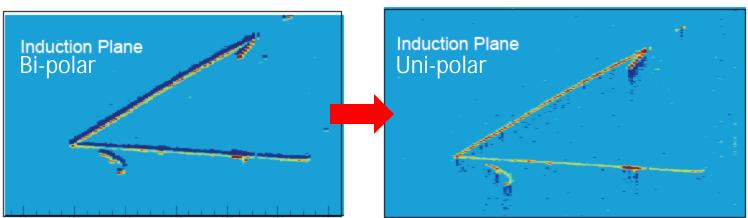
* = Spokesperson

ArgoNeuT



 ArgoNeuT sandwiched between MINOS ND and MINERVA (Under Construction/Commissioning)

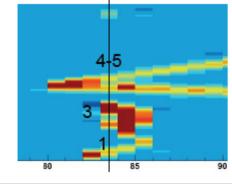
TPC Insertion into cryostat


Bias Voltage Distribution plug-in Cards w/*R*&*C*

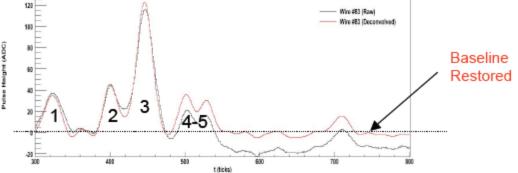
- 1/4-ton TPC, 3 wire planes, 2 readout planes (wires ± 30° wrt vertical)
- 4 mm pitch, 4 mm plane separation, 240 wires/plane
- Cryo-cooler driven purification system, ~ 500 μ s e⁻ lifetime (PM)
- Bias voltage distribution/decoupling caps in the LAr

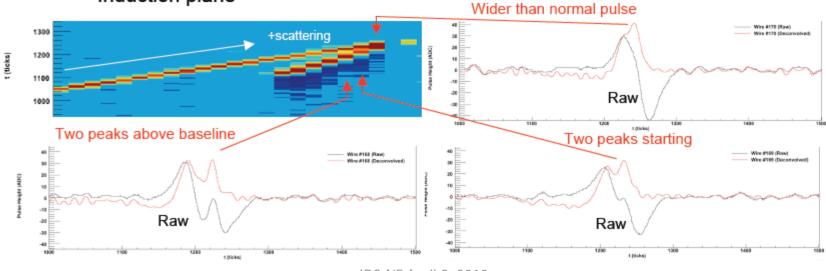
ArgoNeuT Data

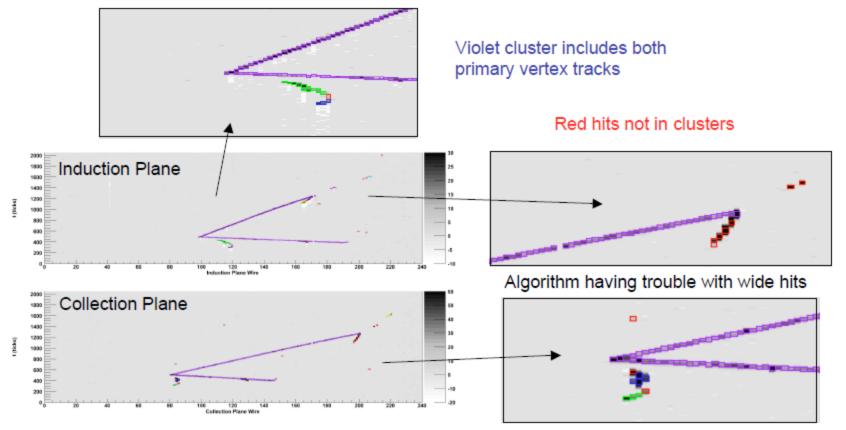
- Prepare for digital signal processing
 - Diffusion much less than inter-plane spacing
 - Find average pulse/wire with "flat" muon tracks (no delta-rays)
- Use FFT to perform deconvolution of raw data
 - Chose FFT filter parameters for hit finding & best signal to noise
 - Removes baseline issues
 - Produces unipolar induction signals with good ionization information


Raw Data

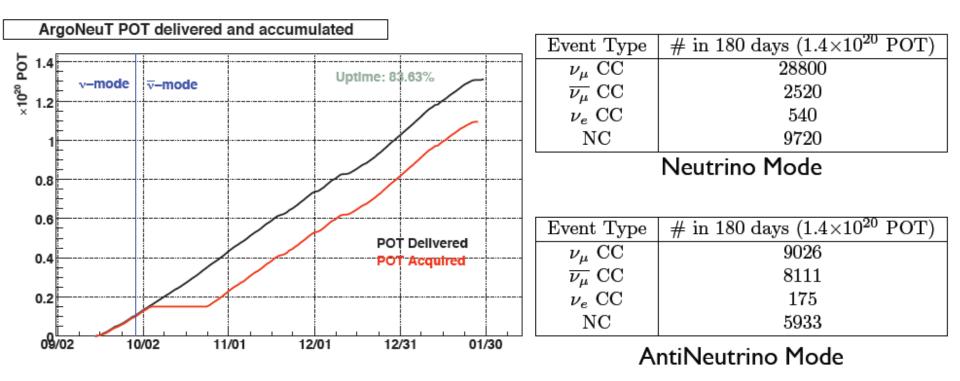
Deconvolution


ArgoNeuT Hit Finding LArSOFT


- Define hits as signals above threshold (typically using 5 counts)
 - Collection plane


Induction plane

ArgoNeuT Hits to Clusters


- DBSCAN: Density Based Spatial Clustering Applications with Noise
 - Algorithm uses distance of a hit to neighboring hits, minimum # hits in cluster
 - Gray scale hit display: using colors for clusters

ArgoNeuT Physics

- ArgoNeuT should acquire ~1.4E20 Protons On Target (P.O.T.) by the end of its run, mostly in anti-neutrino mode.
- •This data is being used to develop techniques for reconstructing events in 3D.
- •Proving dE/dx effectiveness using data will be an important result.
- •We also expect to obtain cross-section measurements (most notably CC Quasi-Elastic) for the first time in a LAr experiment!

Summary

- Integrated R&D Plan developed, reviewed & submitted to DOE
- Materials Test Stand
 - Water is the culprit
- LAPD will confirm this result this summer
- Cryogenic ASIC's obviate many problems w LArTPC's
 Minimize cables, outgassing, design constraints
- ArgoNeuT analysis of neutrino data
 - World first
- Aggressive schedule to build LAr20
 - Liquid argon technology risks well understood and manageable