

IDS-NF Accelerator WG Baseline Update

J. Scott Berg Brookhaven National Laboratory IDS-NF Plenary Meeting 10 April 2010

Sub-Topics with Updates

- Not necessarily changes, most are more precise specifications
- Proton driver
- Front end
- Decay ring

Proton Driver

- Bunch train spacing (between trains): 80 μs
 Based on beam loading in FFAG
- What to do for IDR
 - Requires commitment from "example sites"
 - They will decide what to do

Front End

- Baseline: Study IIa, but with more efficient buncher and phase rotation
 - Rationale: with unknown risks, best to choose technically superior alternative
- Appendix with risk-mitigating alternative
 - Significantly less detailed than baseline

Decay Ring

- Polarimeter
 - Detector group: detailed specs for what is needed
 - Detector perpendicular to beam path, in long drift in matching section
 - Verify:
 - Electrons clear magnet
 - Detector clears beam

Decay Ring

- In-ring Cherenkov
 - Beam divergence distribution
 - Beam blowup calculation only without windows
 - Accelerator: find acceptable window thickness
 - Detector: can detector work with that thickness?
 - Determine necessity of this measurement
 - Have 1% flux uncertainty without
 - Could use second detector at 1 km or so

Alternatives

- Some "risk-mitigation" alternatives included
- Significantly less detail in IDR than baseline
- Particular alternatives discussed
 - Solid target
 - Front end alternative
 - Scaling FFAG replacing second RLA

