THE INTERNATIONAL DESIGN STUDY FOR THE NEUTRIND FACTORY

Detector working group: status and plans for IDS-NF#9

9th IDS-NF Meeting **Fermilab**

MIND baseline (reminder)

- Magnetised Iron Neutrino Detector (MIND):
 - 100 kton at ~2000 km

Baseline reviewed in Glasgow: from 25 GeV to 10 GeV muons in light of large θ_{13} results

MIND baseline (reminder)

- Toroidal field and octagonally shaped detector (as in MINOS)
 - Feasible engineering and known magnetic field map

MIND baseline (reminder)

Do

• Plate engineering:

Plates: two welded layers (0.5mm gaps) 3 mm slots between Plates (2 m wide)

ED

MIND: likelihood analysis

- Analysis is mature: use of GENIE and GEANT4 Ryan Bayes
- **Adapted for new situation with large value of** θ_{13}
- Analysis with toroidal field requires to take into account two possible scenarios: focusing positive and focusing negative
- Analysis follows seven steps:

Event Cut	Description
Successful Reconstruction	Failed Kalman reconstruction of event removed
Fiducial	First hit of event is more than 1.5 m from end of detector
Maximum Momentum	Muon momentum less than $1.6 \times E_{\nu}$
Fitted Proportion	60% of track nodes used in final fit.
Track Quality	$\log(P(\sigma_{q/p}/(q/p) CC)/P(\sigma_{q/p}/(q/p) NC)) > -0.5$
CC Selection	$\log(P(N_{hit} CC)/P(N_{hit} NC)) > 1.0$
Kinematic	$Q_t > 1.5 GeV$

MIND analysis: track quality

Track quality cut:

$$L_{q/p} = \log\left(P\left(\frac{\sigma_{q/p}}{q/p} \middle| CC\right)\right) - \log\left(P\left(\frac{\sigma_{q/p}}{q/p} \middle| NC\right)\right) > -0.5$$

Curvature is more charged-current like than neutral-current like

MIND analysis: CC selection

CC selection:

$$L_{CC} = \log\left(P(N_{hit}|CC)\right) - \log\left(P(N_{hit}|NC)\right) > 1.0$$

Likelihood of number of hits is most efficient CC discriminator

MIND: efficiency

Two efficiencies: one for positive focusing field and one for negative focusing field

MIND: backgrounds

□ Backgrounds: all kept at around 10⁻³

MIND: task list of things left to do

- Perform multi-variate analysis with other CC-like variables
- Finalise hadron reconstruction in MIND
- Perform full systematic error analysis
- Include backgrounds due to cosmic rays to determine whether MIND can be placed on surface (or near surface)
- Perform disappearance analysis to determine accuracy of in measurement of θ_{23} (and whether θ_{23} quadrant may be determined)

Other ?

Near Detectors

- Near detector tasks:
 - Neutrino flux (<1% precision) and extrapolation to far detector
 - Charm production (main background) and taus for Non Standard Interactions (NSI) searches this requirement is now weaker at large θ_{13}
 - Cross-sections and other measurements (ie PDFs, $sin^2\theta_W$)

Scintillating Fibre design

20 tracker stations

Roumen Tsenov, Rosen Matev

- each consists of 4 horizontal and 4 vertical layers of 1 mm diameter scintillating fibres shifted with respect to each other and 5 cm thick active absorber, divided into 5 slabs to allow for more precise measurement of recoil energy near the event vertex;
- 12 000 fibres per station (240 000 in total);
- Air gaps are closed by a layer of scintillating bars;
- Overall detector dimensions: 1.5 x 1.5 x 11 m³ (2.7 tons of polystyrene);
 Adopted as baseline for EUROnu report

Scintillating Fibre performance

Angular resolution scintillating fibre tracker

Scintillating Fibre performance

Momentum resolution scintillating fibre tracker

Near Detector Location

For new 10 GeV Neutrino Factory, we need one Near Detector per decay straight (ie 2 detectors)

- We have lost capability to measure inverse muon decay (threshold = 11 GeV) at lower 10 GeV muon energy
 - However, can use electron scattering for flux measurement

Neutrino electron scattering

- Neutrino electron interactions at 25 GeV 0.25x10²⁰ µ⁻ decays
 - Different neutrino electron scattering interactions

Near detector IMD at 25 GeV

10⁴

Extract IMD signal in μ^2 beam by subtracting background determined by μ^+ beam

0.5 All (5298) Ratio μ^+ data Cut1 (0.4) ¦μ⁻/μ⁺ ratio 0.4 Cut2 (2.0) Cut1 (0.4) Average ratio Cut2 (2.0)

Roumen Tsenov, Rosen Matev

Near Detector v-e scattering

- But near detector can do v-e scattering equally well:
 - Can be used to measure the flux and can be used for both v and \overline{v} at both 25 GeV and 10 GeV Roumen Tsenov, Rosen Matev

25 GeV Neutrino Factory

Near Detector v-e scattering

- **But near detector can do** v**-e scattering equally well:**
 - Can be used to measure the flux and can be used for both v and \overline{v} at both 25 GeV and 10 GeV Roumen Tsenov, Rosen Matev

10 GeV Neutrino Factory

HiRes Near Detector

Main difference: TRT straw tube tracker

HiResMv for B=0.4T, ρ =0.1g/cm³ 0.1 **Relative resolution** 0.09 **ECAL** 0.08 *U* Detector 0.07 0.06 0.05 MUON MOMENTUM, L=2m 0.04 0.03 Dipole 0.02 **ELECTRON ENERGY 0.06//E** 0.01 0 2 1 3 5 6 7 8 10 Target Energy/Momentum (GeV)

> Momentum resolution ~3.5% Angular resolution ~ 1 mrad

HiRes Near Detector

 $\hfill\square$ Fit simultaneously ν_{μ} IMD and ν_{e} channels to extract flux:

See Sanjib Mishra's talk tomorrow

Can the same flux accuracy be achieved if we do not have the IMD channel?

Near Detector: list of things left to do

- Decide on Near Detector baseline for RDR
- □ Finalise v-e scattering for HiRes detector
- Flux extrapolation from near to far detector
- Tau and charm analysis? (lack of manpower)
- Near detector shielding design?
- Neutrino scattering cross-section requirements
- Influence of near detector on systematic errors

Other ?

Conclusions

- A Magnetised Iron Neutrino Detector (MIND) is baseline for Neutrino Factory (10 GeV):
 - 2000 km with 100 kton mass
- Analysis is being re-optimised robust sensitivity results ~85% coverage
- □ Since only one storage ring only two near detectors
- Either Scintillating Fibre or HiRes Straw Tube tracker could do the job – Sci Fi adopted as baseline for EUROnu report but need to define final baseline for RDR
- Flux can still be measured with < 1% precision at a 10 GeV NF but systematic errors and accuracy of fits need to be determined.
- More tasks missing to finalise near detector and near-to-far extrapolation