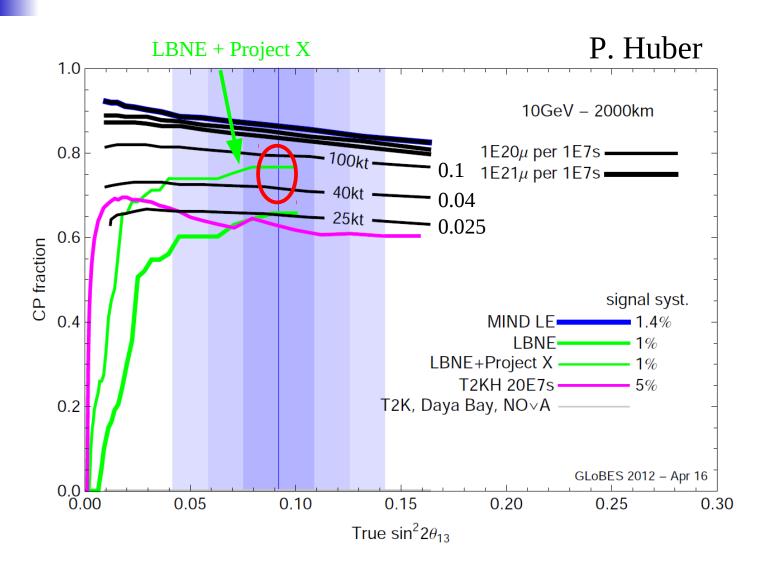
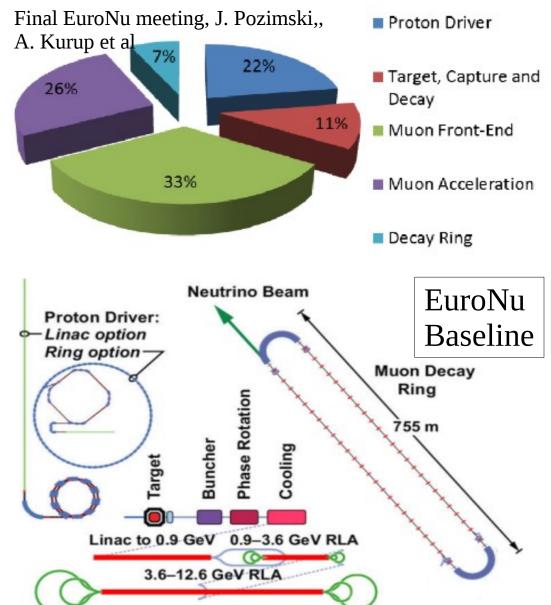
Staged Approach to the NF

Chris Rogers, RAL


Staging Scheme for NF

- 3 parameters/approaches
 - Number of muons in the decay ring
 - Muon final energy
 - Detector size (but not much comment in this talk)
- Need to decide here
 - What approach to take for staging
 - How to present in RDR
- Driven by tension between
 - Physics needs
 - Cost
 - Technical risk
- Try to assess the tensions and propose schemes
 - Expect new costing, physics results, etc to gazump my assessment
- NuStorm should be on the menu
 - But not discussed much here

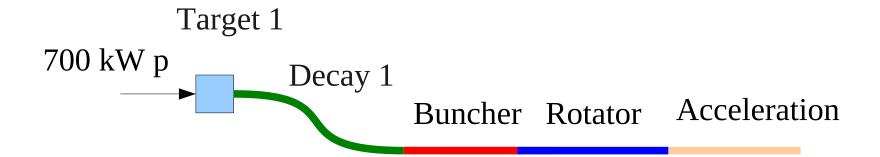
Physics Reach



Cost

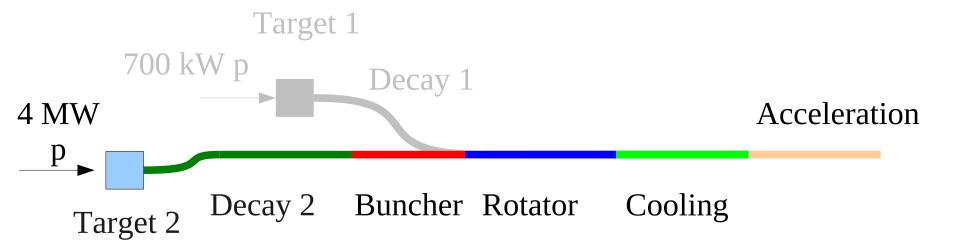
- Base cost on EuroNu
 - 12.6 GeV Muons
 - Single decay ring
 - "Cum grano salis"
- Define cost unit (cu)
 - 1cu = 1% of euronu facility cost
- Needs updated baseline/costing
 - More comments later

Things That Are Expensive, Risky

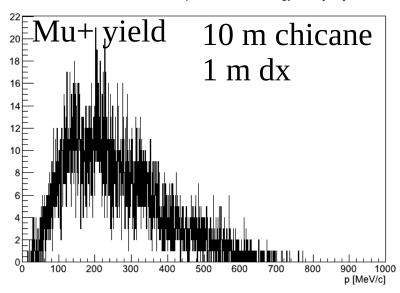


- Main technical risks:
 - Cooling channel
 - Also "perceived" as a technical risk by community due to MICE
 - Target station
 - 20 T magnet
 - Large aperture
 - Lots of beam power
- Big cost:
 - Cooling channel

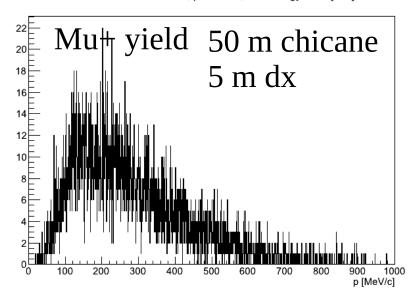
Rate Staging - Stage 1



Rate Staging – Stage 2


- Target station 1 could be a target horn
- Target station 2 could be a solenoid dual sign capture
- By moving the target back, we can now include cooling channel
- Solenoid chicane scaling law
 - Momentum collimation dependent on bending angle
 - Momentum collimation independent of radius of curvature

Pra


Practical Issues

snort criticane r < 300 mm, pid = mu+, total energy=1.47 [TeV]

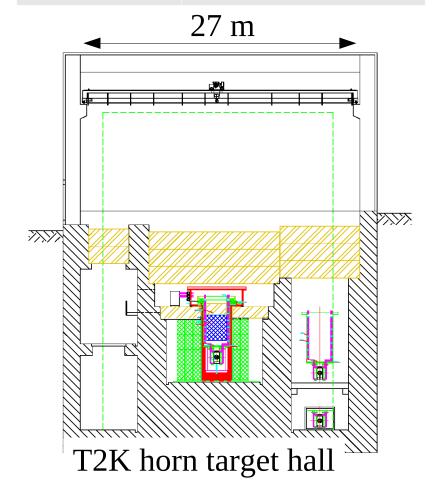
Target 1

Decay 1

Acceleration

Target 2

Decay 2 Buncher Rotator

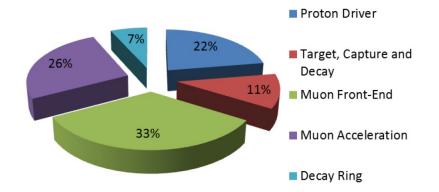

Cooling

Comments

fact

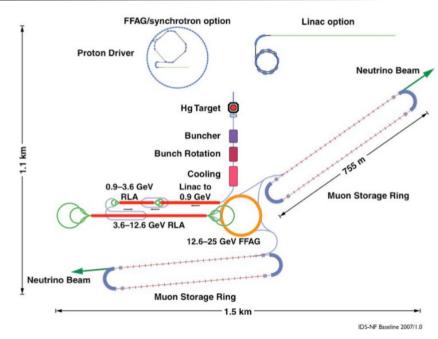
- Good muon yield is pretty stable
- Is 5 m enough room
 - More aggressive chicane design?
 - Vertical bend?
 - E.g. T2K target hall
- May prefer two chicanes
 - One for momentum collimation
 - One for geometry
- Few extra costs/designs required
 - Proton driver transfer line
 - Decommissioning of target 1/decay 1
 - Removal and recommissioning of Buncher + Phase Rotator
 - Not major costs

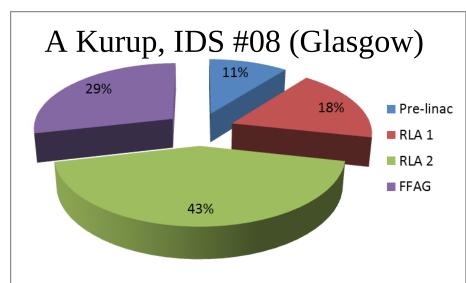
	Good muon yield after proton absorber
50 m chicane	574
10 m chicane	510.7



Rate staging scheme - costs

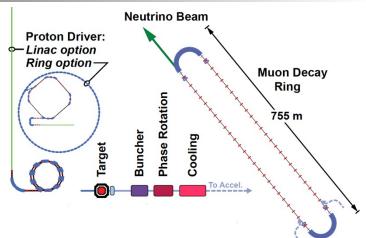
- Stage 1
 - Use existing proton driver
 - Say Fermilab booster @ 700 kW
 - ~1/5 rate
 - Needs bunch compressor
 - Remove cooling channel
 - ~1/2 rate
 - Use horn-type target
 - ~1/2 rate
- Overall ~ 1/20 rate
 - In line with physics requirements
- Proton driver upgrade independent of other items
 - Do it first as it is cheapest/rate
 - Leads to extra physics options
 - Rare decay experiments etc




	Stage 1 [cu]	Stage 2 [cu]
Proton driver	5	18
Target, capture, decay	7	11
Front End	10	23
Acceleration	26	0
Decay Ring	7	0
Total	55	52

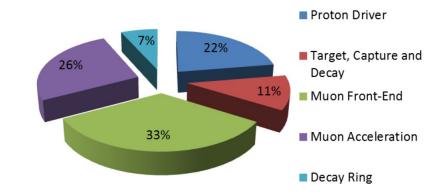
Energy Staging Scheme

- Costing is for IDR baseline
 - 25 GeV acceleration



Energy Staging Scheme

- Scale to 10 GeV acceleration
- Assume Pre-linac and RLA cost scales with energy
 - Assume the same number of arcs
 - Just make the linacs longer
- Assume FFAG cost scales with circumference
 - Voltage per turn ~ circumference
 - Civil costs ~ circumference
- Two designs for FFAG
 - 12.5-25 GeV design => 670 m
 - JS Berg preliminary design 490 m
 - J Pasternak preliminary design 330 m
- Total is either 19.8 or 23.9 cu
 - Compare with EuroNu costing 26 cu



	Cost [cu]
Pre-Linac	5.6
RLA	9.1
Berg FFAG	9.2
Pasternak FFAG	5.1
Total	19.8/23.9

Energy Staging Scheme - Costs

- Physics reach dependence on energy unclear
- But staging here doesnt gain much
 - Need to rebuild decay ring for higher energy
 - Cost of final 5 GeV of acceleration is at worst 9 cu
- Potential in combination with a rate staging scheme?
- Potential in combination with existing decay ring (NuStorm)?

	Stage 1 [cu]	Stage 2 [cu]
Proton driver	22	0
Target, capture, decay	11	0
Front End	33	0
Acceleration	15	9
Decay Ring	5	7
Total	86	16

EuroNu Context

Staged approach to a Neutrino Factory

We envisage a staged approach to delivering a 4 MW, 10 GeV Neutrino Factory, with important physics possibilities at each step. The stages are:

- 1) nSTORM [12]. This project will use an existing proton driver of around 300 kW beam power to create pions in a target. Forward going pions with an energy of 5 GeV (±10%) will be focussed into a transport line, before injection into a straight of a storage ring. Muons of around 3.8 GeV from the decay will then be transported around the ring and the neutrinos from their decay used for the following studies:
 - the search for sterile neutrinos,
 - the measurement of v_eN scattering cross-sections,
 - neutrino detector development.
 - In addition, this facility will be a valuable prototype for the Neutrino Factory construction. An LoI for nSTORM has recently been submitted to the FNAL PAC [12].
- A low power version of the Neutrino Factory, using an existing proton driver, without muon cooling and using a lower mass MIND detector, around 20kt. This will already have a very competitive physics potential [13].
- A 4 MW Neutrino Factory using 10 GeV muons and a 100 kt MIND detector at a baseline of around 2000 km.

Discussion

- Should we reference a staging scenario in RDR?
- What should the staging scenario be?
- How should it be presented in RDR?
 - Do we do lattice design for Stage 1 and Stage 2?
 - Do we do costing for Stage 1 and Stage 2?
 - Mostly front end group + costing that gets the extra work...
 - Do we present Stage 1 as an appendix?

Discussion

- Assert for discussion
 - Full NF looks demanding to fit within today's budget constraints
 - Stage 1 NF seems more hopeful to get funded
 - Therefore staged NF should be the RDR baseline
- Assert for discussion
 - Staging on energy appears to be a mistake
 - Staging on rate
 - Two stages as discussed
 - Three stages may be better
 - Basic machine ("Stage 1" above)
 - Proton driver upgrade
 - Cooling channel + target upgrade
 - Staging on detector
 - I dont know detector cost vs accelerator facility cost
 - Staged detector has some risk mitigation benefit