Large θ_{13} – impact on IDS-NF

Patrick Huber

Center for Neutrino Physics at Virginia Tech

8th IDS-NF plenary meeting April 18-20, 2012, University of Glasgow, UK

P. Huber – VT-CNP – p. 1

Large θ_{13} – implications

The Daya Bay result is

 $\sin^2 2\theta_{13} = 0.092 \pm 0.016 (\text{stat}) \pm 0.005 (\text{syst}) \,,$

which translates into a 5.2 σ exclusion of $\theta_{13} = 0$. What are the implications for future facilities?

In general, this raises the following questions

- Will the mass hierarchy have been determined?
- Are new experiments beyond NOvA and T2K necessary?
- Are superbeams sufficient?

Large θ_{13} – implications

For the IDS-NF, this raises the following questions

- Baseline change
- New optimization
- Staging

which we will discuss in part II of this talk in the afternoon...

$heta_{13}$

FAPP θ_{13} will be known to very high accuracy

At $\sin^2 2\theta_{13} = 0.1$ the measurement error at T2K will be 10%

At $\sin^2 2\theta_{13} = 0.1$ the measurement error at Daya Bay will be <5%

Can beams improve this result? – not any time soon See talk by A. Donini in PPEG parallel

Mass hierarchy

90% CL, combines T2K, NO ν A, Daya Bay, Double Chooz and RENO At this CL MINOS and T2K have discovered $\theta_{13} \neq 0$!

At 3σ this plot would be essentially empty!

PH, M. Lindner, T. Schwetz, W. Winter, JHEP 11 044 (2009), arXiv:0907.1896.

CPV without new experiments?

PH, M. Lindner, T. Schwetz, W. Winter, JHEP 11 044 (2009), arXiv:0907.1896.

Barely reaches 3σ for mass hierarchy, and this is the most favorable δ_{CP} !

CPV without new experiments?

PH, M. Lindner, T. Schwetz, W. Winter, JHEP 11 044 (2009), arXiv:0907.1896. Includes Project X and T2K running at 1.7 MW.

Are superbeams enough?

Mass hierarchy will be resolved by most approaches!

Are superbeams enough?

SB reach CPF of 0.7-0.75 NF reaches CPF of 0.85-0.9

MIND LE – 100 kt MIND at 2000km and 10GeV

NF still best for **all** values of θ_{13} !

CP precision

P. Coloma, A. Donini,E. Fernandez-Martinez,P. Hernandez, ar-Xiv:1203:5651

More details from A. Donini in PPEG parallels

CP precision

CAVEAT: highly preliminary!

P. Coloma, PH, J. Kopp, W. Winter, in preparation

LENF consistently superior – more details from P. Coloma in PPEG parallels

Summary

Comparison with SB

- Will the mass hierarchy have been determined w/o new experiments? not likely (requires Project X)
- SB will measure mass hierarchy (even a phase 1 LBNE may be able to do that)
- Are SB likely to discover CPV yes, provided they are truly super (which LBNE is not, but T2HK is)
- Can SB do precision measurements highly dependent on place in parameter space and systematics
- Can NF do significantly better YES

Implications for the IDS-NF

One page summary

- New baseline: 100kt MIND, baseline 1300-2500 km, 5-10 GeV, 1E21 muons per 1E7s
- To stay relevant
 - Make the precision case
 - Exploit all opportunities
 - Be cost aware
 - Do not rely on >10 year projects, ie. Project X

Opportunity doesn't always arrive gift wrapped.

Today's challenges are different. Talk to us and see how we can help you turn elusive potential into tangible performance.

Consulting • Technology • Outsourcing

IDS-NF High performance. Delivered.

P. Huber – VT-CNP – p. 15

Optimization – one baseline

At large θ_{13} , using MIND and one baseline, optimum is at 2200-2300 km and 10-14 GeV. CPF 0.77-0.84

S. Agarwalla, PH, J. Tang, W. Winter JHEP 1101 120 (2011).

Optimization – 2nd baseline?

At large θ_{13} , using MIND and one baseline, optimum is at 2300-2600 km and 10-15 GeV. CPF 0.77-0.84 identical to one baseline setup Only 1 baseline needed!

S. Agarwalla, PH, J. Tang, W. Winter JHEP 1101 120 (2011). P. Huber – VT-CNP – p. 17

Case for ν_{τ} – or lack thereof

Standard physics

- MIND has been re-evaluated and now a has low (few GeV) neutrino threshold, which effectively allows to fully map the 1st oscillation maximum for $L \ge 2000 \,\mathrm{km}$
- The current baseline has a MIND at the magic baseline

As a result it was found that no performance is gained from having an ECC measuring $\nu_e \rightarrow \nu_{\tau}$ anywhere between 1000-1000km (PRD 74:073003,2006.).

Case for ν_{τ} – or lack thereof

Standard physics result is easy to understand:

- $\theta_{23} \simeq \pi/4$, that is, ν_{τ} and ν_{μ} are maximally mixed.
- Within a 3 flavor framework, any change of the ν_{τ} oscillation probability will show up with similar magnitude in the corresponding ν_{μ} channel
- Muons are much easier to detect than taus, hence the statistical power of a well designed muon-only experiment always outperforms tau detection

Case for ν_{τ} – or lack thereof

A fully optimized neutrino factory, with 2 low threshold MIND detectors, does **not** experience a significant increase in its physics reach from tau-detection capabilities at baselines exceeding a few 100km. This statement is true, both for

- Standard 3 flavor oscillation
- Non-standard interactions

All this information has been concisely documented in IDS-NF 008.

This does not drive us to higher energies!

Flux measurements

P. Coloma, PH, J. Kopp, W. Winter, in preparation Gray area – old systematics implementation (ν and $\bar{\nu}$ uncorrelated) Color area – new systematics

implementation plus near detector

Includes a flux error variation from 0.1% - 1%

Does this justify the cost of extra acceleration to be able use inverse μ -decay?

Staging

Traditional staging scenarios evolve from low energy, 1 baseline setups to high energy, 2 baseline setups. *e.g.* J. Tang, W. Winter, Phys.Rev. D81 (2010) 033005.

At large θ_{13} , we only want low energy and 1 baseline!

Remaining degrees of freedom

- Luminosity
- Detector technology
 - iron vs fully active
 - magnetized vs non-magnetized

Staging – luminosity

1/20-1/10 of luminosityNF as good as the best SB

1/50-1/20 of luminosityNF on par with LBNE

 \Rightarrow Start somewhere between 1/50 and 1/20 and work your way to full luminosity

reduced proton power, 700kW instead of 4MW – no need to wait for Project X no cooling – reduction of 1.7, but removes technological risk

Staging – luminosity

Assume 1/25 of the default luminosity, gains split equally between detector and accelerator

- proton beam power of $4 \text{ MW} \rightarrow 800 \text{ kW}$
- fiducial mass of MIND of $100\,\text{kt} \rightarrow 20\,\text{kt}$

This opens new possibilities

- Maybe horns instead of solenoids can be used
- Maybe existing proton infrastructure can be used
- Maybe 20 kt of LAr can be magnetized

LBNE + Project X cost about \$3.6 billion – can we make a 1/25th-luminosity NF for a similar price? Can we make it for 1/3 the price?

Staging – energy

Lower energy still works with MIND – but need to go to shorter baseline, too

At large θ_{13} final sensitivity at full luminosity very similar to 10GeV option, maybe even slightly better

Staging – in one view

Summary

Consequences for IDS-NF

- MIND LE optimal at large θ_{13}
- 1/25th of the luminosity is sufficient for an entry level facility to match the capabilities of SB
- still lower energies may be feasible using MIND

 requites shorter baselines
- totally active detectors (scintillator, liquid argon) seem to be too expensive per kt

Open questions PPEG & Detector WG

- Study precision
 - Systematics modeling including near detector
 - Select (or develop) performance indicators
 - Optimize for large θ_{13}

• Compare with precision of other facilities Accelerator WG

- Alternative proton beam scenarios, e.g. 120 GeV
- 1 MW targets
- 5-10GeV muon beam

How cheap and fast can a 1/25th-luminosity NF be?

Who says you can't be big and nimble?

To see how our research and experience can help you become a high-performance business, visit accenture.com

Consulting • Technology • Outsourcing

IDS-NF

High performance. Delivered.