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Atmospheric νµ  disappear, large θ23 (SK) (98)

Solar νe disappear, large θ12 (H/S,Ga,SK) (02)

Solar νe are converted to νµ+ντ (SNO) (02)

Reactor anti-νe disappear/reappear (KamLAND) (04)

Accelerator νµ disappear (K2K 04 , MINOS 06)

Accelerator νµ converted to ντ  (OPERA 10)

Accelerator νµ converted to νe , θ13 hint(T2K, MINOS,DC) (11)

Reactor anti-νe disappear, θ13 meas.(Daya Bay, RENO) (12)

History of Neutrino Mixing (98-)



Standard Model states
Neutrino mass states

Oscillation phase 3 masses + 3 angles + 1(or 3) phase(s) 
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Global Fits 2011
Schwetz, Tortola, 

Valle ’11

Fogli, Lisi, Marrone, 
Palazzo, Rotunno ’11REFERENCES 5

parameter best fit ±1σ 2σ 3σ

∆m2
21 [10

−5eV2] 7.59+0.20
−0.18 7.24–7.99 7.09–8.19

∆m2
31 [10

−3eV2]
2.50+0.09

−0.16

−(2.40+0.08
−0.09)

2.25− 2.68

−(2.23− 2.58)

2.14− 2.76

−(2.13− 2.67)

sin2 θ12 0.312+0.017
−0.015 0.28–0.35 0.27–0.36

sin2 θ23
0.52+0.06

−0.07

0.52± 0.06

0.41–0.61

0.42–0.61
0.39–0.64

sin2 θ13
0.013+0.007

−0.005

0.016+0.008
−0.006

0.004–0.028
0.005–0.031

0.001–0.035
0.001–0.039

δ

(

−0.61+0.75
−0.65

)

π
(

−0.41+0.65
−0.70

)

π
0− 2π 0− 2π

Table 1. Neutrino oscillation parameters summary. For ∆m2
31, sin

2 θ23, sin
2 θ13, and

δ the upper (lower) row corresponds to normal (inverted) neutrino mass hierarchy. See
Ref. [1] for details and references.
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Theta13 in 2011/12}
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Neutrino Mixing

θ12 = 34o ± 1o

θ23 = 45o ± 5o

θ13 = 9o ± 1o



Bimaximal 

Tri-bimaximal  

Golden ratio 

Simple Mixing Patterns RULED OUT                                                     
(since all have max. atm. and zero reactor angle)  

UTB =





�
2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6

− 1√
3

1√
2



P

UBM =





1√
2

1√
2

0

− 1
2

1
2

1√
2

1
2 − 1

2
1√
2



P

UBM =




c12 s12 0
− s12√

2
− c12√

2
1√
2

s12√
2

− c12√
2

1√
2



P

tan θ12 =
1

φφ =
1 +

√
5

2
θ12 = 31.7o

θ12 = 45o

θ12 = 35.26oHarrison, 
Perkins, Scott

Kajirama, Raidal, 
Strumia; Everett, Stuart



Large Charged Lepton Mixing 
Corrections Ue to the Rescue

 BM, TBM, GR might only apply to neutrino 
mixing and                            implies

Leading to solar sum rules: (Antusch, King)

 Bimaximal                                            c.f. QLC 

Tri-bimaximal

Golden ratio

c.f. Experiment

e.g. Bimaximal sum rule implies 

UPMNS = UeU
†
ν θ13 ≈ θe12/

√
2

θ12 = 45o + θ13 cos δ

θ12 = 35o + θ13 cos δ

θ12 = 32o + θ13 cos δ

θ12 = 34o ± 1o θ13 = 9o ± 1o

cos δ ≈ −1

θ12 + θC = 45o



Tri-bimaximal Sum 
Rule prediction  

δ ≈ 90o or 270o

Antusch, Huber, King, Schwetz
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Figure 4: The 3 σ error in degrees for the combination of parameters θ12−θ13 cos(δ), appearing on the

left-hand side of the sum rule in Eq. (1), as a function of the true value of δ for sin2 2θ13 = 10−2 (left)

and sin2 2θ13 = 10−1 (right). The different colored lines are for different experiments as given in the

legend. The sgn(∆m2
31) degenerate solution has been omitted. Although sin2 θ12 = 0.3 (θ12 = 33.2◦)

has been used as true value, the results are practically independent of this assumption. The error on

θ12 is 1.1◦ at 3 σ.

this figure the most optimistic accuracy on θ12 from an SPMIN reactor experiment has
been assumed, and that the mass hierarchy degeneracy has not been taken into account.
Indeed, decreasing the true value of θ13 for all setups besides the neutrino factory one, at
some point the mass hierarchy degenerate solution kicks in and introduces an ambiguity
in the allowed interval for θ12 − θ13 cos(δ), compare also Fig. 3.

For a given model prediction of the neutrino mixing angle θν
12, the sum rule in Eq. (1)

may be expressed as a prediction for the physical solar mixing angle as a function of
the CP violating Dirac oscillation phase δ. Fig. 5 shows the sum rule prediction for
the PMNS parameter θ12 corresponding to tri-bimaximal mixing in the neutrino mass
matrix, θν

12 = arcsin( 1√
3
) ≈ 35.3◦, i.e.,

θ12 ≈ 35.3◦ + θ13 cos(δ) . (15)

In the figure we have simulated data for the NFO setup for different true values of θ13

and δ and used Eq. (15) to calculate the resulting 3 σ range for the predicted θ12. This
result can be compared with the outcome of a separate measurement of θ12 (for example
in a reactor experiment) to test whether the hypothesis of tri-bimaximal neutrino mixing
is compatible with the assumptions leading to the sum rule.

12

Setup Ref. Baseline Detector Beam
SPL [29] 130 km 440 kt WC 4 MW superbeam, 2 y (ν) + 8 y (ν̄)
T2HK [29] 295 km 440 kt WC 4 MW superbeam, 2 y (ν) + 8 y (ν̄)
WBB [30] 1300 km 300 kt WC 1.5 MW superbeam, 5 y (ν) + 5 y (ν̄)
BB350 [32] 730 km 440 kt WC 5 × 1.1 · 1018 18Ne + 5 × 2.9 · 1018 6He
NFC [33] 4000 km 50 kt MID 50 GeV, 4 × 1021 µ− + 4 × 1021 µ+

NFO [33] 4000+7500 km 2×50 kt MID* 20 GeV, 4 × 1021 µ− + 4 × 1021 µ+

Table 2: Summary of the six future LBL accelerator experiments considered in this study. WC

stands for water Čerenkov detector and all masses for this technology are fiducial masses. MID denotes

a magnetized iron calorimeter, whereas MID* denotes an improved version thereof. In the column

“Beam” we give for BB350 the total number of useful ion decays, and for NFC, NFO the energy of the

stored muons and the total number of useful muon decays. For more details see the text.

WBB assumes an operational time per solar year of 1.7 · 107 s instead of the usual 107

s. The two neutrino factory setups considered here, NFC and NFO are taken from [33].
NFC is what we call conservative, in the sense that it employs only one magnetized iron
detector (MID) with the canonical properties regarding muon detection threshold and
background rejection [34, 27]. NFO is an optimized version, which uses two identical
detectors at two baselines of 4000 km and 7500 km, the latter being the so-called magic
baseline [35]. The second difference is that the detector is now an improved MID*,
which has a lower muon detection threshold but somewhat larger backgrounds, for de-
tails see [33]. The lower threshold allows to reduce the muon energy from 50 GeV to 20
GeV.

Figs. 2 and 3 show the results for the 3 σ allowed interval in θ12 − θ13 cos(δ) as
a function of the true value of δ assuming sin2 2θ13 = 10−1 and 10−2, respectively,
from the considered experimental setups. This allowed interval can be compared with
theoretical predictions for θν

12. We illustrate in the figures the cases of bimaximal and
tri-bimaximal mixing by the horizontal lines, but of course any prediction for θν

12 can be
confronted with the outcome of the experiments. Since we have used as true value for
θ12 the present best fit point of 33.2◦, bimaximal mixing (θν

12 = 45◦) can be obtained
only for large values of θ13 and δ # 180◦, in agreement with the discussion in Sec. 3. For
larger (smaller) true values of θ12, the bands and islands in Figs. 2 and 3 are shifted up
(down) correspondingly.

All experiments shown in Figs. 2 and 3 have good sensitivity to θ12 − θ13 cos(δ).
In many cases only some specific values of the CP phase δ are consistent with a given
prediction for θν

12, which illustrates the power of the sum rule. An interesting observation
is that the presence of the mass hierarchy degenerate solutions (dashed lines) limits the
usefulness of SPL and T2HK severely. In these experiments the matter effect is small
because of the relatively short baseline. This implies that the mass hierarchy degenerate
solution cannot be resolved. Furthermore, the degenerate solution appears at a similar
value of θ13 but at a fake CP phase close to π − δ [36]. This changes the sign of the
term θ13 cos(δ), which explains the shape of the dashed curves in the figures. Because of
this degeneracy an ambiguity appears when the sum rule is applied for SPL and T2HK,

9
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Figure 5: The prediction for θ12 from the sum rule with tri-bimaximal neutrino mixing, as given in

Eq.(15). The different curves show the predicted 3 σ interval for θ12 following from a NFO measurement

of θ13 cos(δ) as a function of the true values of δ and θ13.

5 Summary and Conclusions

In this work we have considered the sum rule in Eq. (1), and in particular how well
the combination of parameters θ12 − θ13 cos(δ), which appears on the left-hand side, can
be measured in oscillation experiments. This is important, since the sum rule follows
from quite general assumptions which are satisfied in a wide class of flavour models.
Moreover, particular such flavour models make definite predictions for θν

12, and the sum
rule then enables these models to be tested.

We have derived the sum rule, starting from a parameterization independent set
of sum rules, which follow from certain well defined assumptions about the nature of
charged lepton and neutrino mixings. We then expressed the sum rule in terms of
the standard PMNS mixing parameters (see e.g. [2]) commonly used in presenting the
results of neutrino oscillation experiments. One way to view the sum rule is to consider
the charged lepton corrections to the neutrino mixing angle θν

12 predicted from theory,
leading to the physical solar neutrino mixing angle θ12. Then, under certain assumptions,
the charged lepton correction turns out to only depend on the physical combination
θ13 cos(δ). To be precise, the sum rule in Eq. (1) holds up to first order in θ13 under the
following assumptions:

(a) The charged lepton mixing matrix is CKM-like, i.e., dominated by the 1-2 mixing
angle, see Eq. (6).

(b) The 1-3 element of the neutrino mixing matrix is negligible, θν
13 ≈ 0.

13
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Tri-Bimaximal Parametrisation

where ΦTB
i are just the columns of the TB mixing matrix. As shown in Appendix B, due

to the unitarity of UR and the special form of the mass matrix MR in Eq. (4.1), the only
non-zero parameter is α13 = −α∗

31 whose dependence on the input parameters α, β, γ,∆
is given in Eqs. (B.15,B.16). The fact that only α13 = −α∗

31 is non-zero implies that UR

is of TM form as expected. Furthermore, since,

UT
RMRUR = Mdiag

R , (4.8)

it is then straightforward to derive the lepton mixing matrix UPMNS, as in Eq. (2.9),

UPMNS =
mD

yvu
UR . (4.9)

Due to the trivial structure of mD as well as a diagonal charged lepton sector, the PMNS
mixing matrix can thus be directly obtained from UR by permuting the second and the
third row as well as multiplying the Majorana phase matrix P on the right and another
phase matrix P ′ on the left, leading to UPMNS = UTM where,

UTM ≈ P ′
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The matrix P ′ has to be chosen such that the PMNS matrix without Majorana phases
is brought to the standard PDG form where the 2-3 and 3-3 elements are real and the
mixing angles are all between 0◦ and 90◦. In linear approximation, the required form of
P ′ becomes

P ′ ≈ diag(1, a+,−a−) , a± = 1± i ·
Im(α13)√

3
. (4.11)

Multiplying this explicit form of the phase matrix P ′ we obtain a mixing matrix that is
consistent with the standard PDG phase conventions.

It is useful to compare the TM mixing matrix in Eq. (4.10) to a general parametrisation
of the PMNS mixing matrix in terms of deviations from TB mixing [25],

UPMNS ≈
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where the deviation parameters s, a, r are defined as [25],

sin θ12 =
1√
3
(1 + s) , sin θ23 =

1√
2
(1 + a) , sin θ13 =
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2
. (4.13)

This comparison yields

s ≈ 0 , a ≈
Re (α13)√

3
, r cos δ ≈ −

2√
3
Re (α13) , δ ≈ arg (α13) + π , (4.14)
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r = reactors = solar a = atmospheric

King; Pakvasa, Rodejohann, Weiler 

s = −0.03± 0.03 a = −0.02± 0.10 r = 0.22± 0.02

TB mixing corresponds to s=r=a=0



Tri-bimaximal 
(s=a=r=0)

Tri-bimaximal-
reactor (s=a=0)

Tri-maximal 1 

(s=0, a=r.cosδ)           

Tri-maximal 2 
(s=0, a=-r/2.cosδ)

Thus, apparently following the adage “many a little makes a mickle”, one is led to a
2σ indication for a non-zero value of θ13. This corresponds to a value for θ13 in the 1σ
range (in degrees),

θ13 = 8o ± 2o. (6)

In any case it is certainly theoretically plausible that θ13 could take a value in the above
range [7], so it is interesting to consider this possibility, and we emphasize this more
general motivation.

It is well known that the solar and atmospheric data are consistent with so-called
tri-bimaximal (TB) mixing [8],
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corresponding to the mixing angles, 1

θ12 = 35.26o, θ23 = 45o, θ13 = 0o. (8)

The ansatz of TB mixing matrix is interesting due to its symmetry properties which seem
to call for a possibly discrete non-Abelian family symmetry in nature [9]. There has been
a considerable amount of theoretical work in this direction [10, 11, 12, 13, 14, 15]. The
presence of a non-zero reactor angle as in Eq.6 would be clearly inconsistent with the TB
prediction for the zero reactor angle in Eq.8 and so the TB ansatz would be excluded,
even though the predictions for the solar and atmospheric angles remain acceptable.

In this paper we shall explore the possibility of extending the TB mixing matrix to
allow for a non-zero reactor angle θ13, while at the same time preserving the predictions
for the tri-maximal solar angle and the maximal atmospheric angle given by Eq.8, namely
θ12 = 35.26o and θ23 = 45o. In order to maintain these predictions requires,

|Ue2|2

|Ue1|2
=

1

2
,

|Uµ3|2

|Uτ3|2
= 1. (9)

To leading order in Ue3 the conditions in Eq.9 correspond approximately to,

|Ue2|2 ≈ 1/3, |Uµ3|2 ≈ 1/2. (10)

We refer to the above proposal as as tri-bimaximal-reactor (TBR) mixing, to emphasize
that tri-maximal solar mixing and maximal atmospheric mixing are both preserved while

1Note that different versions of the TB mixing matrix appear in the literature with the minus signs
appearing in different places corresponding to differing choices of charged lepton and Majorana phases.
We prefer the convention shown which emerges from the PDG parametrization when the angles are set
equal to those shown in Eq.8

2

θ12 = arcsin
1√
3
− �2

2
√

2
, (3.8)

θ13 =
�√
2

+
�2

2
√

2
cos α , (3.9)

δ = α − �
5

2
sinα (only up to order �) , (3.10)

α2 = −α + 2 � sinα − 3 �2 sin 2α , (3.11)

α3 = 0 . (3.12)

Note that the PMNS matrix has only one non-trivial Majorana phase as one of the neutrinos is

exactly massless. These results are only slightly modified if we choose the (1, 0, 2)
T

alignment

for the subdominant neutrino term: θ23 → π
2 − θ23, δ → π + δ, δe → π + δe, and δµ ↔ δτ . All

observables in the neutrino sector can be expressed in terms of ma, � and α. Excluding Majorana

phases (and the mass of the massless neutrino), this means that the model class makes three

predictions which should be testable in future oscillation experiments since θ13 is comparatively

large.

It is useful to compare the above predictions to a general leading order parametrisation of

the PMNS mixing matrix in the PDG convention in terms of deviations from TB mixing [15],

UPMNS =





2√
6
(1− 1

2s) 1√
3
(1 + s) 1√

2
re−iδ

− 1√
6
(1 + s− a + reiδ

)
1√
3
(1− 1

2s− a− 1
2reiδ

)
1√
2
(1 + a)

1√
6
(1 + s + a− reiδ

) − 1√
3
(1− 1

2s + a +
1
2reiδ

)
1√
2
(1− a)



P , (3.13)

where the deviation parameters s, a, r are defined as [15],

sin θ12 =
1√
3
(1 + s) , sin θ23 =

1√
2
(1 + a) , sin θ13 =

r√
2

. (3.14)

At leading order the above predictions can be expressed by

a = r cos δ , s = 0 , (3.15)

where

r =
2

3

mν
2

mν
3

∼ 2

15
→ θ13 ∼ 5

◦ − 6
◦ , (3.16)

where the predicted reactor angle may be compared to Eq. (1.1).
4

We emphasise that these

predictions hold true for both the (1, 2, 0)
T

as well as the (1, 0, 2)
T

alignment. In both cases,

with a suitable choice of phase convention, the leading order mixing matrix can be written in

the form,

UTM1 = P �





2√
6

1√
3

1√
2
re−iδ

− 1√
6

1√
3
(1− 3

2reiδ
)

1√
2
(1 + re−iδ

)

− 1√
6

1√
3
(1 +

3
2reiδ

) − 1√
2
(1− re−iδ

)



 P , (3.17)

where Eq. (3.17) corresponds to a small angle expansion of TM1 mixing in Eq. (1.2). However,

from the general argument given earlier in this subsection, we expect TM1 mixing in Eq. (1.2)

to be valid to all orders beyond the small angle approximation.

4Note that in a model where the charged lepton mass matrix is not diagonal, one must combine the charged
lepton corrections with the underlying TB neutrino mixing deviations to formulate the total observed deviation
from TB mixing as discussed in [16].
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where the deviation parameters s, a, r are defined as [24],

sin θ12 =
1√
3
(1 + s) , sin θ23 =

1√
2
(1 + a) , sin θ13 =

r√
2
. (3.11)

Setting,
s ≈ 0 , a ≈ 0 , (3.12)

we find [5]:

UTBR =







√

2
3

1√
3

1√
2
re−iδ

− 1√
6
(1 + reiδ) 1√

3
(1− 1

2re
iδ) 1√

2
1√
6
(1− reiδ) − 1√

3
(1 + 1

2re
iδ) 1√

2






P. (3.13)

TBR mixing has recently been obtained in an S4 setup [6]. Alternative proposals [25–36]
that have been put forward to accommodate the T2K result could similarly be compared
using the deviation parameters s, a, r. With future neutrino oscillation experiments being
able to not only accurately measure the reactor angle, parametrised here as r, but also
the atmospheric and solar deviation parameters a, s and eventually the CP violating
oscillation phase δ, it is clear that relating these deviation parameters via sum rules
comprise the next step in discriminating different models of lepton masses and mixings.

4 Conclusions

In the well known direct models of tri-bimaximal (TB) mixing, based on A4 and S4, the
TB mixing is enforced by a Klein symmetry ZS

2 × ZU
2 in the neutrino sector, together

with a ZT
3 symmetry in the charged lepton sector, where a common basis corresponds to

a diagonal charged lepton mass matrix. It is also well known that TB mixing can emerge
from either S4, which contains the generators S, T, U , or A4, which contains S, T . In the
case of A4 the U symmetry emerges accidentally as a result of the absence of flavons in
the 1′ or 1′′ representations of A4. Such models are called “direct models” since (some
of) the group generators remain unbroken in different sectors of the low energy effective
theory. Although this simple and appealing picture is apparently shattered by the T2K
results, which indicate a sizeable reactor angle θ13, simple alternative possibilities such as
tri-bimaximal-reactor (TBR) mixing remain.

We have proposed a renormalisable S4 model of leptons. We have studied the vacuum
alignment in the S4 model and shown that it predicts accurate TBR neutrino mixing due
to a TB violating flavon which preserves µ− τ antisymmetry but only enters the neutrino
sector at higher order, resulting in approximate TB mixing.

Although the S4 model of leptons presented here involve diagonal charged lepton mass
matrices, when the models are extended to include quarks, for example in the framework
of SU(5) unification, we would expect the charged lepton sectors (but not the neutrino
sectors) of these models to be modified. This could introduce additional contributions to
lepton mixing from the charged lepton sector. Interestingly the S4 model here preserves
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UTM2 = P �





2√
6

1√
3

1√
2
re−iδ

− 1√
6
(1 + 3

2re
iδ) 1√

3
1√
2
(1− 1

2re
−iδ)

− 1√
6
(1− 3

2re
iδ) 1√

3
− 1√

2
(1 + 1

2re
−iδ)



P

Tri-maximal Hydras



Anarchy
Anarchy: all angles are “large” and unpredicted,      
so expect sin!13  ~0.5  

0.15

Altarelli, Feruglio, Masina

Ue3 = 0.15± 0.02

Hence larger reactor 
angle is good news 

Problem is that reactor 
angle is not that large... 

Also Anarchy not very 
predictive c.f. landscape

Hall, Murayama



So far no symmetry or dynamics... 
now we consider...

U(1) Family Synmetry

See-saw mechanism

Sequential dominance

Constrained sequential dominance 2

Discrete Family Symmetry

Grand Unified Theories



U(1) family symmetry
Hirsch and King

Anarchy

Anarchy

U(1) models

Anarchy        
U(1) models

AnarchyU(1) models

U(1) models

Anarchylepton (Quark) 
generations 
labelled by      
U(1) family 
symmetry

sin22!13  may 
peak at lower 
values



Dirac matrix
Possible type II 
contribution 

P.Minkowski, PLB67(1977)421

                  

 Neutrinos are light because RH 
neutrinos are heavy

 No explanation of neutrino mixing

 Need to add another ingredient               
e.g. Sequential Dominance 

P.Minkowski, PLB67(1977)421 ...See-saw mechanism
Mv = mLR.

1

MRR
.mT

LR

Heavy Majorana matrix

Light Majorana matrix



Sequential dominance (SD) 
mLR =




− a d
− b e
− c f





Blazek, King

Daya Bay and RENO

MRR =




− 0 0
0 M2 0
0 0 M3





RH neutrinos contribute 
sequentially in see-saw

 Mixing angles depend on 
ratios of Yukawas  

m3 ∼ (d+ e+ f)2/M3

m2 ∼ (a+ b+ c)2/M2

m1 � m2 � m3

tan θ23 ≈ e/f
tan θ12 ≈ a/(b− c)

√
2

θ13 ≈ d/e
√
2 +O(m2/m3)

SEQUENTIAL 

DOMINANCE

DOMINANCE



Constrained sequential dominance 2 

mLR =




− a d
− b e
− c f



 MRR =




− 0 0
0 M2 0
0 0 M3





  Trimaximal1 solar mixing 
  leptogenesis phase = oscillation phase
  Reactor angle and sum rule predictions

Antusch,King,
Luhn,Spinrath Suppose

Then 

a = b/2 c = d = 0 e = f

θ13 =

√
2

3

m2

m3
∼ 5o

Can such sum rules be tested in 
neutrino experiments?

Ballett,King,Luhn,
Pascoli, Schmidt 

θ23 = 45o +
√
2θ13 cos δ



Discrete Family Symmetry
Relations such as e=f suggest permutation sym

More generally discrete family symmetry
Non-Abelian family symmetries

· unify three families in multiplets of family symmetry

· group should have two- or three-dimensional representations

PSL2(7) SO(3)∆(96)

∆(27) Z7 ! Z3

SU(3)

A4

S4 →

→

Flavour and neutrino theory 12 of 23



Grand Unified Theories
Quarks and leptons may be related via GUTs

 Stefan Antusch                                                                                   University of Basel & MPI of Physik (Munich) 28!

More generally in GUTs, when charged lepton corrections dominate ... 

Mu 

Me 

Md 

m! 

GUT  
relation e.g.: U! = UTB 

2) Lepton mixing sum rule 
(for                       ) 

See e.g.: hep-ph/0508044 



Models Survey c.2006
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FIG. 1: Histogram of the number of models for each sin2 θ13 including all 63 models.

1e-05 0.0001 0.001 0.01 0.1

sin2
!
13

0

1

2

3

4

5

6

7

8

9

10

11

12

N
um

be
r o

f M
od

el
s

anarchy
texture zero 
SO(3)
A4
S3, S4
Le-Lµ

-L
"

SRND
SO(10) lopsided
SO(10) symmetric/asym

Models that Predict All 3 Angles

FIG. 2: Histogram of the number of models for each sin2 θ13 that give accurate predictions for all three

leptonic mixing angles.
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Albright and Chen Daya Bay 
and RENO 

Only 7 
models 
survive!

Ue3 = 0.15± 0.02



Now there are many more HYDRAS
H.-J. He, F.-R. Yin, arXiv:1104.2654; Z.-Z. Xing, arXiv:1106.3244; 
N. Qin and B. Q. Ma, Phys. Lett. B 702 (2011) 143 [arXiv:
1106.3284]; Y. j. Zheng and B. Q. Ma, arXiv:1106.4040;                 
S. Zhou, arXiv:1106.4808; T. Araki, arXiv:1106.5211;                      
N. Haba, R. Taka- hashi, arXiv:1106.5926; D. Meloni, arXiv:
1107.0221; S. Morisi, K. M. Patel and E. Peinado, arXiv:1107.0696; 
W. Chao, Y.-J. Zheng, arXiv:1107.0738; H. Zhang, S. Zhou, arXiv:
1107.1097; X. Chu, M. Dhen, T. Hambye, arXiv:1107.1589; P. S. B. 
Dev, R. N. Mohapatra, M. Severson, arXiv:1107.2378;                  
R. d. A. Toorop, F. Feruglio, C. Hagedorn, arXiv:1107.3486;            
S. Antusch, V. Maurer, arXiv:1107.3728; Q. H. Cao, S. Khalil, E. 
Ma and H. Okada, arXiv:1108.0570; D. Marzocca, S. T. Petcov, A. 
Romanino and M. Spinrath, arXiv:1108.0614; S. F. Ge, D. A. Dicus 
and W. W. Repko, arXiv:1108.0964; F. Bazzocchi, arXiv:1108.2497; 
Y. Shimizu, M. Tanimoto and A. Watanabe, arXiv:1105.2929; X. G. 
He and A. Zee, arXiv:1106.4359; S. F. King and C. Luhn, arXiv:
1107.5332

Distinguished by sum rules...



Summary of Sum Rule Predictions 
Quark-Lepton Complementarity

Solar sum rules

Atm. sum rules

θ12 = 45o + θ13 cos δ

θ12 = 35o + θ13 cos δ

θ12 = 32o + θ13 cos δ

θ12 + θC = 45o

Bimaximal

Golden Ratio

Tri-bimaximal

Tri-bimaximal-
reactor θ23 = 45o

Trimaximal1 θ23 = 45o +
√
2θ13 cos δ

Trimaximal2 θ23 = 45o − θ13√
2
cos δ

Now that      is measured these predict   θ13 cos δ



Conclusions
Simple patterns of mixing such as Bimaximal, Tri-bimaximal, Golden 
Ratio are ruled out by Daya Bay and RENO

However they may be rescued by invoking large charged lepton 
corrections leading to solar sum rules involving the CP phase delta

Other patterns consistent with Daya Bay and RENO have been proposed 
such as Tri-bimaximal-reactor mixing and  two versions of Trimaximal 
mixing, leading to atmospheric sum rules also involving the CP phase

Many models based on discrete family symmetry and GUTs proposed 
before Daya Bay and RENO have been killed but many other “Hydras” 
have emerged, distinguished by the above solar and atm. sum rules

It is vital to measure the mixing angles and the CP phase delta to good 
precision to discriminate between the different models and decide if the 
Universe is based  on GUTs and Family symmetry or if Anarchy Rules

Some models unpredictive due to NLO corrections - resemble Anarchy


