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Consequences of Large θ13 on Neutrino Factory

Re-optimization of baseline
and beam energy required
Best sensitivity to δCP
achieved with

2000 km baseline.
10 GeV stored µ energy.
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Figure 9. Fraction of δ for which CPV will be discovered (3σ CL) as a function of L and Eµ for the
single baseline Neutrino Factory. The different panels correspond to different true values of sin2 2θ13,
as given there. Here SF=1 (2.5× 1020 muons per year and polarity) is used with a 50 kt detector. The
optimal performance is marked by a dot: (2200,10.00), (2288,13.62), (3390,20.00) and (4345,22.08).
Figure and caption taken from reference [109].

1.4.2. Optimisation of a two baseline Neutrino Factory

The simultaneous optimisation of two Neutrino Factory baselines has been studied in reference [108],
see figure 11 (shaded regions). One easily recovers the behaviour discussed above: sin2 2θ13 (upper
left panel) and mass hierarchy (upper right panel) sensitivity prefer a long baseline, but the combi-
nation with a shorter baseline is not significantly worse. For CP violation (lower left panel), however,
one baseline has to be considerably shorter. If all performance indicators are combined (lower right
panel), the optimum at 4 000 km plus 7 500 km is obtained. A very interesting study is performed in
the dashed curves: these curves illustrate the effect of a potential non-standard interaction εeτ , which
is known to harm especially the appearance channels. While the absolute performance for all perfor-

25

MIND simulation used to examine sensitivities with these
specifications.
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Expected Neutrino Rates At Detector

Rates calculated with GENIE
and the NeUtrino Tool Suite
(NUTS).

Single 50 kTon MIND.
Collected 1021 µ− and µ+

decays over 5 years.
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Expected Neutrino Rates At Detector

Rates calculated with GENIE
and the NeUtrino Tool Suite
(NUTS).

Single 50 kTon MIND.
Collected 1021 µ− and µ+

decays over 5 years.
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MIND Simulation in Review

Simulation implemented in
GEANT4.
Detector is layered 3 cm
iron plates and 2 cm
scintillator

Octagonal cross section
Detector
14 m×14 m×60 m
Each scintillator plane
gives readouts in x and y

Neutrino interactions
sampled from GENIE.
Used magnetic field map
provided by Bob Wands for
simulation and
reconstruction.
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MIND Reconstruction

This is the focus of development for MIND

Operation Summary
Digitized detector space points passed to reconstruction.
Events are sorted into tracks using either Kalman filter or
cellular automaton methods.
Selected tracks are fit using Kalman fitter.

Reconstruction supported and maintained by IFIC group.
Details of recent development to be given in talk by Tapasi
Ghosh.
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Cuts Based Golden Analysis

Described in detail in IDR.
Separates NC like from CC
like events.
CC backgrounds are
reduced as they are
partially NC like.

Departures from IDR Analysis
Quadratic and
displacement cuts
removed.
Kinematic cuts replaced by
a uniform requirement
Qt > 0.15 GeV
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Charge Current Selection Efficiencies

Signal Efficiencies
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All reconstruction efficiencies at or above 50%.
Background suppressed by parts in 103.
NC backgrounds completely suppressed.
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Multi-Variate Analysis

A full multivariate analysis is under development.
Use a set of correlated variables to select CC signal from
background.

Should be able to achieve higher efficiency than existing
analysis.
Still a work in progress.

Variety of Methods Tested
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Expected Rates at Detector

Rates after including detector efficiencies.
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Little difference between µ+ focussing and µ− focussing

Experiment Signal Back. S/
√

S + B
Stored µ+ 2046 25 45
Stored µ− 309 81 16
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Expected Rates at Detector

Rates after including detector efficiencies.
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... To Summarize

MIND simulation is a
Much of the effort has been in developing reconstruction
and analysis.
Current analysis can produce a very strong result
assuming maximal CP violation.
Still room for improvement.

Nascent multi-variate analysis
Reconstruction of low energy tracks.

Still need to generalize these results to determine δCP
coverage and error.
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