

MIND Optimization with 10 GeV NF For Large θ_{13}

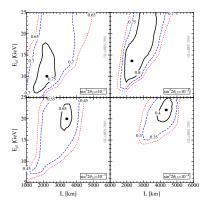
R. Bayes¹, A. Bross³, A. Cervera-Villanueva² , M. Ellis^{4,5}, Tapasi Ghosh² A. Laing¹ , F.J.P. Soler¹ , and R. Wands³

¹University of Glasgow, ²IFIC and Universidad de Valencia, ³Fermilab, ⁴Brunell University, ⁵Westpac Institutional Bank, Australia, on behalf of the IDS-NF collaboration

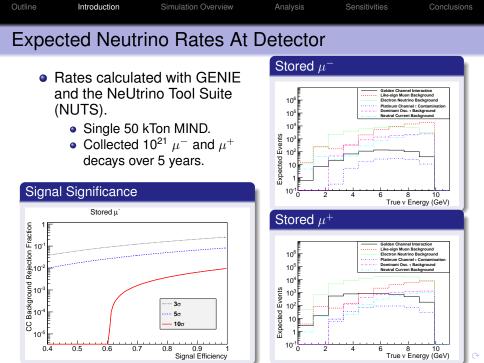
IDS-NF Plenary Meeting April 19, 2012

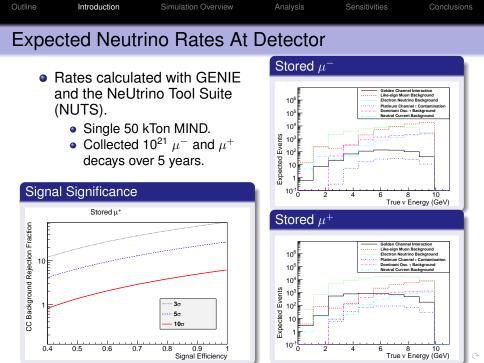
(日)

Outline	Introduction	Simulation Overview	Analysis	Sensitivities	Conclusions



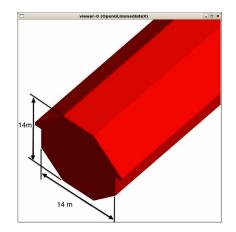
Outline	Introduction	Simulation Overview	Analysis	Sensitivities	Conclusions


Consequences of Large θ_{13} on Neutrino Factory


- Re-optimization of baseline and beam energy required
- Best sensitivity to δ_{CP} achieved with
 - 2000 km baseline.
 - 10 GeV stored μ energy.

・ コット (雪) (小田) (コット 日)

MIND simulation used to examine sensitivities with these specifications.



Outline	Introduction	Simulation Overview	Analysis	Sensitivities	Conclusions

MIND Simulation in Review

- Simulation implemented in GEANT4.
- Detector is layered 3 cm iron plates and 2 cm scintillator
 - Octagonal cross section
 - Detector 14 m×14 m×60 m
 - Each scintillator plane gives readouts in x and y
- Neutrino interactions sampled from GENIE.
- Used magnetic field map provided by Bob Wands for simulation and reconstruction.

・ コット (雪) (小田) (コット 日)

Outline	Introduction	Simulation Overview	Analysis	Sensitivities	Conclusions
	Roconst	ruction			

• This is the focus of development for MIND

Operation Summary

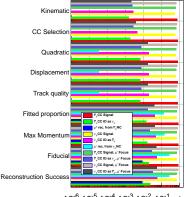
วทอบ นษณ

- Digitized detector space points passed to reconstruction.
- Events are sorted into tracks using either Kalman filter or cellular automaton methods.
- Selected tracks are fit using Kalman fitter.
- Reconstruction supported and maintained by IFIC group.
- Details of recent development to be given in talk by Tapasi Ghosh.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Sensitivities

Conclusions


Cuts Based Golden Analysis

Described in detail in IDR.

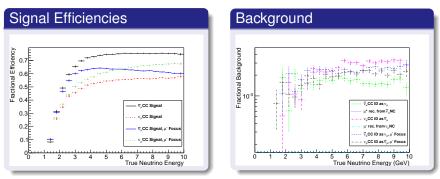
- Separates NC like from CC like events.
- CC backgrounds are reduced as they are partially NC like.

Departures from IDR Analysis

- Quadratic and displacement cuts removed.
- Kinematic cuts replaced by a uniform requirement *Q_t* > 0.15 GeV

 $10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1$ Fraction of Events Passed by Cuts

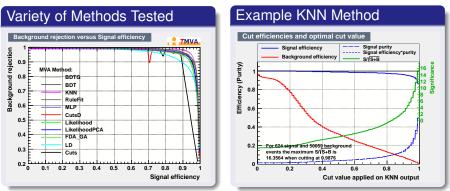
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●


Sensitivities

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

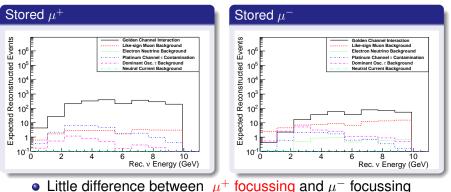
э

Conclusions


Charge Current Selection Efficiencies

- All reconstruction efficiencies at or above 50%.
- Background suppressed by parts in 10³.
- NC backgrounds completely suppressed.

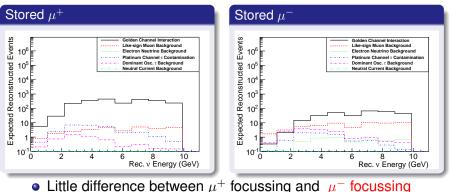
N.4. 11*				
Multi-	Variate Ar	nalvsis		


- A full multivariate analysis is under development.
 - Use a set of correlated variables to select CC signal from background.
- Should be able to achieve higher efficiency than existing analysis.
- Still a work in progress.

Sensitivities

Expected Rates at Detector

• Rates after including detector efficiencies.



Experiment	Signal	Back.	$S/\sqrt{S+B}$
Stored μ^+	2046	25	45
Stored μ^-	309	81	16

Sensitivities

Expected Rates at Detector

• Rates after including detector efficiencies.

Experiment	Signal	Back.	$S/\sqrt{S+B}$
Stored μ^+	2046	25	45
Stored μ^-	309	81	16

200

Outline	Introduction	Simulation Overview	Analysis	Sensitivities	Conclusions
To	Summari	70			

- MIND simulation is a
- Much of the effort has been in developing reconstruction and analysis.
- Current analysis can produce a very strong result assuming maximal CP violation.
- Still room for improvement.
 - Nascent multi-variate analysis
 - Reconstruction of low energy tracks.
- Still need to generalize these results to determine δ_{CP} coverage and error.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●