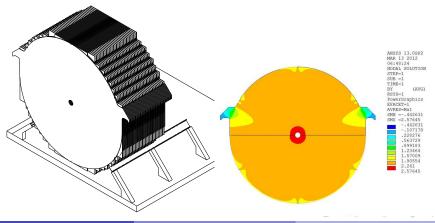
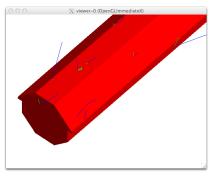
A Detector Simulation for VLENF

R. Bayes¹, A. Bross³, A. Cervera-Villanueva², M. Ellis^{4,5}, A. Laing¹, F.J.P. Soler¹, Chris Tunnel⁶, and R. Wands³

¹University of Glasgow, ²IFIC and Universidad de Valencia, ³Fermilab, ⁴Brunell University, ⁵Westpac Institutional Bank, Australia,⁶University of Oxford, on behalf of the IDS-NF collaboration



IDS-NF Plenary Meeting April 19, 2012


SuperBIND

- A magnetized detector needed for charge selection.
- Achieved using MIND with thin steel plates.
- Higher field in plates required to produce comparable bending
- Circular cross-section proposed

Simulation

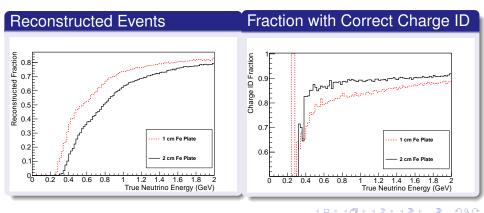
- Used the MIND simulation as a starting point
- Assumed detector dimensions 5 m×5 m×10 m.
- Composed of alternating 1 cm Fe Plates and 2 cm Scintillator planes.
 - Detector parameters are flexible — allows for optimization.
- Assume 2 GeV stored muons.
- Parametrization of field map used for simulation and reconstruction.

A Detector Simulation for VLENF

Reconstruction

This is the focus of development for MIND

Operation Summary

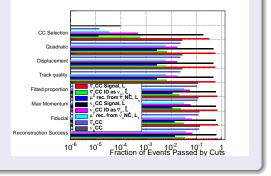

- Digitized detector space points passed to reconstruction.
- Events are sorted into tracks using either Kalman filter or cellular automaton methods.
- Selected tracks are fit using Kalman fitter.
- Reconstruction supported and maintained by IFIC group.
- Treatment of multiple track and high angle track is paramount.

< 6 b

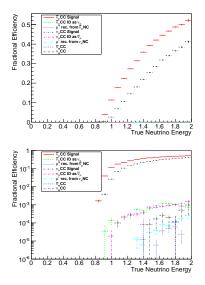
4 3 > 4 3

Charge selection optimization: Plate Thickness

- Original proposal called for 1 cm plates
- Doubling plate thickness improves charge identification
 - Same magnetic field used
 - Effective magnetic field increases by 3/2



Analysis for SuperBIND


• Have appropriated Golden Analysis from MIND.

Heavily modified with respect to MIND IDR analysis.

- Suppressed or Removed some cuts:
 - Displacement of track in Z and R
 - Quadratic refit of track
 - Kinematic cut on *Q_t* and *E_{rec}*
- Retuned Track quality and CC Selection cuts in response to low ν energy.

Golden Analysis Efficiencies and Background Suppression

- Efficiency limited by CC Selection.
- Also removes "NC-like" CC backgrounds.
- Uses number of hits in trajectory.
- Removes events with *p_z* < 1 GeV/c.

Alternative: multi-variate analysis

- Use energy deposition.
- Reduce reliance hits in trajectory.

< 6 b

• Still a work in progress.

Conclusions

- A working simulation of the VLENF detector exists.
- Details of the design still to be implemented
 - Plate Geometry.
 - Scintillator bars.
- Important elements are present.
 - Realistic magnetic field.
 - Layered Steel and Scintillator.
- Reconstruction and analysis need the most development
 - Known issues in reconstruction/event classification.
 - Efficiency limited by basing NC rejection on energy dependent quantity.
- Issues mitigated if stored μ energy increased to 3 GeV from 2 GeV.

< 回 > < 回 > < 回 >