

The Very-Low Energy Neutrino Factory (VLENF)

Baseline(s)

> 100 kW Target Station

- > Assume 60 GeV proton
 - > Fermilab PIP era
- > Be target
 - > Optimization on-going
- Li Lens or horn collection after target
- Collection/transport channel
 - > Two options
 - \succ Stochastic injection of π
 - \succ Kicker with $\pi \rightarrow \mu$ decay channel
 - At present NOT considering simultaneous collection of both signs

Decay ring

- > Large aperture FODO
- Racetrack FFAG
- Instrumentation
 - BCTs, mag-Spec in arc, polarimeter

🛟 Fermilab

Sergei Striganov Fermilab

 π production

In momentum range 2.7 < 3.0 < 3.3 Obtain 0.11 π⁺/pot 0.10 π⁻/pot with 60 GeV p

What Fraction of this can we actually accept and transport?

辈 Fermilab

Alan Bross

π^+ Yield, $\delta p/p=\pm 0.1$, NuMI horn 60 GeV

‡ Fermilab

Alan Bross

19cm gold target, NuMI horn, 400 kA: 0.087 π⁺ δp/p=±0.1 in 2mm rad acceptance after horn

🛟 Fermilab

Alan Bross

IDS-NF Plenary, Glasgow

March 21, 2012

FFAG Racetrack

Lagrange & Mori Kyoto

🛟 Fermilab

Alan Bross

IDS-NF Plenary, Glasgow

March 21, 2012

7

Akira Sato Osaka University

IDS-NF Plenary, Glasgow

Alan Bross

8

March 21, 2012

G4Beamline Simulation Output v beam at monitor detector at L_D =26m

L_S=108 m, L_D=26 m

辈 Fermilab

Alan Bross

IDS-NF Plenary, Glasgow

March 21, 2012

9

Flux

Muons, more Muons & more Muons

Assumptions

 $> N_{\mu} = (POT) X (\pi/POT) X \varepsilon_{\text{collection}} X \varepsilon_{\text{inj}} X (\mu/\pi) X A_{\text{dynamic}} X \Omega$

- > 10²¹ POT in 5 years of running @ 60 GeV in Fermilab PIP era
- > 0.1 π/POT
- $\succ \epsilon_{\text{collection}} = 0.9$
- ⊳ ε_{inj} = 0.9
- > μ/π = 0.08 (yct X μ capture in $\pi \rightarrow \mu$ decay) [π decay in straight]

> Might do better with a $\pi \rightarrow \mu$ decay channel

- > A_{dynamic} = 0.9 (from G4Beamline simulation)
- > Ω = Straight/circumference ratio (0.34)
- \succ This yield 2 X 10¹⁸ useful μ decays

🛟 Fermilab

Experimental Layout

Appearance Channel: V_e → V_µ Golden Channel

roara

Must reject the "wrong" sign µ with great efficiency

Why $v_{\mu} \rightarrow v_{e}$ Appearance Ch. not possible

Appearance-only (though disappearance good too!)

$$Pr[e \to \mu] = 4|U_{e4}|^2|U_{\mu4}|^2\sin^2(\frac{\Delta m_{41}^2L}{4E})$$

Magnetized Iron

- > 1 kT fiducial volume
 - Following MINOS ND ME design
 - > 1 cm Fe plate
 - > 5 m diameter
- Utilize superconducting transmission line for excitation
 - Developed 10 years ago for VLHC

Alan Bross

> Extruded scintillator +SiPM

🛟 Fermilab

of STL

IDS-NF Plenary, Glasgow

March 21, 2012

🛟 Fermilab

Alan Bross

IDS-NF Plenary, Glasgow

March 21, 2012

Cross-Section Measurements & Disappearance Searches

Cross-section measurements

μ storage ring presents only way to measure v_μ & v_e
& (v and v̄) x-sections in same experiment
> Supports future long-baseline experiments

$$\frac{P(\nu_{\mu} \rightarrow \nu_{e}) - P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}{P(\nu_{\mu} \rightarrow \nu_{e}) + P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})}$$

- Important to note that with θ₁₃ large, the asymmetry you're trying to measure is small, so:
 - Need to know underlying v/vbar flux & σ more precisely
 - Bkg content & uncertainties start to become more important

🛟 Fermilab

Alan Bross

IDS-NF Plenary, Glasgow

ν_{e,} v_µ Disappearance Searches *Rates*

Detector mass – Near & Far

- > 100T Near
- > 1kT Far
- > 10²¹ POT exposure (μ^+)
 - > Number of v_e events (CC):
 - \succ N_{evts-near} \approx 1.8M
 - \rightarrow N_{evts-far} \approx 200k
 - > Number of \overline{v}_{μ} events (CC):
 - > $N_{evts-near} \approx 0.9M$
 - $> N_{evts-far} \approx 100k$
- > < 1% Measurements certainly possible from # events available
 - > v_e disappearance might require re-optimization (global) of detectors
- In addition, NC disappearance would provide very strong case for new physics
 - > \approx 140k v [$\nu_{\mu} + \nu_{e}$] NC interactions
 - > Look for $v + p \rightarrow v + p$

A Hypothetical

The Existence of sterile vs is confirmed

Precision studies? 100X in μ flux?

Preparing a LOI

I met with Stephen Parke on March 26th and he encouraged us to submit a LOI for consideration at the June PAC

- Must submit to PAC by May 18th
- http://www.fnal.gov/directorate/program_planning/phys_adv_com/PAC dates.html
- > Need not be a "detailed" proposal, but should
 - Be detailed enough to judge scientific merit, ie, "is there is enough for the PAC to give serious consideration to what is in the document"
 - \succ Large δm^2 oscillation physics
 - v cross-section measurements
 - > Technology development/demo
 - > SP said "Do what you can"
 - Stephen said not to include costing
 - But we should assemble as much information as possible for our internal discussions

LOI

> Outline:

- > Overview
- > Theoretical & experimental motivation
- Facility
 - > Targeting/capture
 - Transport/injection
 - > Decay ring
- > Far Detector
- > Near Detectors
 - > For oscillation physics
 - For cross-section measurements
- > Performance
 - > Event rates
 - > MC
 - > Sensitivities
 - > x-section
- Conclusions

"What's in a name? That which we call a rose By any other name would smell as sweet."

Some Silliness

A NF by any other name is still a NF

- I have felt strongly that whatever we call this effort, NF should be in the name
- > However, recent events have changed my mind
- > What is unique?
 - > A new way to produce high-energy v_s

vSTORM

Neutrinos from STORed Muons

Thanks to Joachim

Proto-Collaboration

Chuck Ankenbrandt⁵, Ryan Bayes², Alex Bogacz⁸, Herman Cease¹, John Cobb⁷, Malcolm Ellis⁹, Jim Kilmer¹, Joachim Kopp¹, Jean-Baptist Lagrange⁴, Ken Long³, Nikolai Mokhov¹, Yoshi Mori⁴, David Neuffer¹, Jaroslaw Pasternak³, Milorad Popovic¹, Tom Roberts⁵, Akira Sato⁶, Edward Santos³, Paul Soler², Sergei Striganov¹, Chris Tunnell⁷, Bob Wands¹, Walter Winter¹⁰ ¹Fermilab ²University of Glasgow ³Imperial College London ⁴Kyoto University ⁵Muons Inc ⁶Osaka University ⁷Oxford University ⁸T.TNL ⁹Westpac-HEPh ¹⁰Universität Würzburg

🛟 Fermilab

Outlook

Future Work:

> Facility

- > Targeting, capture/transport & Injection
 - > Need detailed design and simulation
- Decay Ring optimization
 - > Continued study of both RFFAG & FODO decay rings
- > Decay Ring Instrumentation
 - Define and simulate performance of BCT, polarimeter, Magneticspectrometer, etc.
- > Produce full G4Beamline simulation of all of the above to define ν flux
 - > And verify the precision to which it can be determined.

Outlook II

Future Work:

- Detector simulation
 - For oscillation studies, continue MC study of backgrounds & systematics
 - > Also investigate disappearance channels
 - > In particular the event classification in the reconstruction needs optimization.
 - > For cross-section measurements need detector baseline design
 - > Learn much from detector work for LBNE & IDS-NF
 - \succ Increased emphasis on v_{e} interactions, however
 - > Near Detector hall could be envisioned as v detector test facility

Conclusions

vSTORM:

\succ Delivers on the physics for the study of sterile v

- Offering a new approach to the production of v beams and will allow us to confirm/exclude LSND/MiniBooNE v-bar data
- \blacktriangleright Can add significantly to our knowledge of v cross-sections, particularly for v_e interactions
- > Provides an accelerator technology test bed
 - > But can also utilize existing accelerator infrastructure
- > Provides a powerful v detector test facility

END

Thank you

BACK UPS

Fine-Resolution Totally Active Segmented Detector (IDS-NF)

Simulation of a Totally Active Scintillating Detector (TASD) using Nova and Minerva concepts with Geant4

- 3333 Modules (X and Y plane)
- Each plane contains 1000 slab
- Total: 6.7M channels

- Momenta between 100 MeV/c to 15 GeV/c
- Magnetic field considered: 0.5 T
- Reconstructed position resolution ~ 4.5 mm

🛟 Fermilab

Alan Bross

IDS-NF Plenary, Glasgow

March 21, 2012

= 0.5T

Magnet- Concept for IDS-NF

UNITS Length Magn Flux Density

Magn Field

Magn Scalar Pot A

Magn Vector Pot Wt

Elec Flux Density Elec Field

Conductivity

55516 nodes

10 conductors Noddly interpolated fields with coil fields by integration Reflection in XY plane (X+Y fields=0) Reflection in ZX plane (Y+Z fields=0) Reflection in ZX plane (Y field=0)

Power

Force Energy S

Current Density

Magnetic_Cevern_Iron TOSCA Magnetostatic Non-linear materials Simulation No 1 of 1 310916 elements

Local Coordinates Origin: 0.0.0.0.0.0 Local XYZ = Global XYZ

Am

Vm

Sm

Am

VLHC SC Transmission Line

- > Technically proven
- > Affordable

R&D to support concept Has not been funded 1 m iron wall thickness. ~2.4 T peak field in the iron. Good field uniformity

🛟 Fermilab

Alan Bross

IDS-NF Plenary, Glasgow

March 21, 2012

TASD Performance

v Event Reconstruction ϵ

Muon charge mis-ID rate

Detector Options

Technology check List

	Fid Volume	В	Recon	Costing Model
SuperBIND				
Mag-TASD				
Mag-LAr				

Yes - OK
Maybe
Not Yet

