<u>A High Resolution V Near-Detector for Neutrino Factory</u> $\mu \geq Ve V_{\mu}$

* The LMNS Matrix Elements ▹ O Sensitivity **№V**-Mass Hierarchy [™]Resolving degeneracies *Beyond PMNS $\Rightarrow \mathcal{N}$ eed systematic precision **№**⊖₂₃ = 45^0? ▶ ⊖₁₃ Precision ▶ CPT Violation ? High Δm**2 Oscillation ? Phenomenon that defies the Zeitgeist * The Familiar, Beautiful Neighborhood Cross-section [™]Sin^{**}2(⊖w): precision commensurate with Colliders [™]Sum rules Isospin Physics Heavy neutrinos

Rewriting the V-text-book

2

ND PHYSICS GOALS

- ◆ Determination of the relative abundance, the energy spectrum, and the detailed topology (complete hadronic multiplicity) of the four neutrino species in NuMI: $\nu_{\mu}, \bar{\nu}_{\mu}, \frac{\nu_{e}}{\nu_{e}}, \text{ and } \overline{\nu_{e}} \text{ CC-interactions. } \stackrel{\leftarrow}{\leftarrow} \text{Absolute v-Flux & Ev-scale; Cross-Sections}$
- ◆ An 'Event-Generator Measurement' for the LBLν experiments including single and coherent π^0 (π^+) production, $\pi^\pm/K^\pm/p$ for the ν_e-appearance experiment, and a quantitative determination of the neutrino-energy scale. _{∈Backgrounds} to Oscillation
- Measurement of the weak-mixing angle, $sin^2\theta_W$, with a precision of about 0.2%, using independent measurements:
 - ν(ν)-q (DIS);
 ν(ν)-e⁻ (NC).

⇐Example of Precision Measurement

Direct probe of the running of $\sin^2 \theta_W$ within a single experiment.

• Precise determination of the exclusive processes such as ν quasi-elastic, resonance, $K^0/\Lambda/D$ production, and of the nucleon structure functions.

 Search for weakly interacting massive particles with electronic, muonic, and hadronic decay modes with unprecedented sensitivity.

 $\begin{array}{ll} \mbox{Transition Radiation} & \twoheadrightarrow \mbox{Electron ID} \Rightarrow \gamma \mbox{ (w. Kinematics)} \\ \mbox{dE/dx} & \twoheadrightarrow \mbox{Proton, } \pi, \mbox{K ID} \\ \mbox{Magnet/Muon Detector} & \gg \mu \end{array}$

<i>Hiresmu: Near Detector for *LBNE*

MEASURING NUCLEAR EFFECTS (Fe, Ar, ..)

- Ratios of F_2 AND xF_3 on different nuclei;
- Comparisons with charged leptons.
- Use 0.15X₀ thick target plates in front of three straw modules (providing 6 space points) without radiators. Nuclear targets upstream.
 - For Ca target consider CaCO₃ or other compounds;
 - **OPTION** : possible to install other materials (Pb, etc.).

South Carolina Group

A ν_{μ} CC candidate in NOMAD

A $\bar{\nu}_e$ CC candidate in NOMAD

e-/e+ ID using TRD, ECAL

Universality equivalence: $\mu - \nu \mu \leftrightarrow e - \nu e$

Improvements over the NOMAD: HiResMnu-Concept

* Tracking Charged Particles

- * x6 more hits in the Transverse-Plane (X-Y)
- ▶ x2 more hits along Z-axis

* Electron/Positron ID

Continuous TR providing e+/e- ID

* Calorimetry: 4π-Coverage

- Downstream ECAL: fine Longitudinal & Transverse segmentation
- ▶ Barrel & Upstream ECAL

*****μ-ID

№ 4Π-Coverage: min-Pµ ≫ 0.3 GeV

<u>Resolutions in HiResMv</u>

• $\rho \approx 0.1 \text{gm/cm^3}$ • Space point position $\approx 200 \mu$ • Time resolution $\approx 1 \text{ ns}$

• CC-Events Vertex: $\Delta(X,Y,Z) \simeq O(100\mu)$ • Energy in Downstream-ECAL $\simeq 6\%/\sqrt{E}$ • μ -Angle resolution (~5 GeV) $\simeq O(1 \text{ mrad})$

▲ µ-Energy resolution (~3 GeV) ~ 3.5%
 ▲ e-Energy resolution (~3 GeV) ~ 3.5%

<u>Near Detector Sensitivity Studies for Neutrino Factory</u> $\mu \ge Ve V\mu$

* Flux

[™]Inverse Muon Decay $Vx + e \rightarrow Vx + \mu$ - (Single, forward μ -)

 $V\mu$ (t-channel) or Anti-Ve (s-channel)

► V=Elas Vx + e- →Vx + e- (Single, forward e-)

Ve-CC, Anti-Ve-CC, & all flavor Vxe-NC

№ E ν - Dependence

Fixed-V0 Method Combined fit of Single, forward μ - & Single, forward μ -*Ev-Scale*

*Interactions

№*µ*-QE Analysis:

 \Rightarrow For **v**-Factory, Eff ~ 60% with 90%-purity

[№] Ve-CC (inclusive) Analysis:

 \Rightarrow For v-Factory, ve-CC: Eff ~ 55% with 99%-purity

 \Rightarrow For **v**-Factory, **v**_eBar-CC: Eff ~ 55% with 99%-purity

π0-Reconstruction:

 \Rightarrow with one $\gamma \rightarrow e^+e^-$, Eff ~ 55% from *O*.*5*--20 GeV

№ Event by Event Separation of NC -vs- CC: $1.0 \le EHAD \le 20 GeV$

▶ Precision Measurement of the *Weak Mixing Angle:* δ (sin²θ_w) ≫ 0.0003

Working on: Determination of Beam-Divergence using $\mathcal V$ -Data

How to measure the background, @5%--10%, with $a \le 1\%$ precision? * (i) ν_{μ} -N CC: Measure 2-Track (μ^{-},X) to measure when Ex ~ 0 \Rightarrow ($\mu^{-},0$) * (ii) ν_{e} -N CC: Measure 1- and 2-Track (e^{-},X) \Rightarrow ($e^{-},0$) * (iii) Figures show what CC: Measure 1- and 2-Track (e^{-},X) with $Ee \ge Cut$ (15, 10) GeV

* (iv) Less reliance on anti-neutrino I-Track (μ^+ ,X)

Sensitivity Analysis VEI: Vµ(ebar) + e- »> e- + Ve (Single, forward e-)

 $* \nu_{\mu(ebar)}$ -N NC background due to single, asymmetric $\gamma \rightarrow e - e + and \pi^{-}/\mu^{-}$

$\gamma \rightarrow e - e + \Rightarrow$	$\bar{\nu}_e$	$ u_{\mu}$	$\bar{\nu}_{e}$ -CC	ν_{μ} -CC	$\bar{\nu}_e$ -NC	ν_{μ} -NC
	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000
Positron/muon veto	1,000,000	1,000,000	40,168	50,219	1,000,000	1,000,000
Hadron Veto	1,000,000	1,000,000	32,028	30,570	209,171	147,826
Photon Conversion & $E_{e^+} < 0.05~{\rm GeV}$	1,000,000	1,000,000	81	79	460	340
20 planes	833,179	836,172	1	1	0	0
$E_e > 0.5 { m ~GeV}$	748,786	794,086	0	0	0	0
$z < 0.001 { m ~GeV}$	733,723	785,240	0	0	0	0
Efficiency 🔿	66%	71%			~10/	N-6

TR sel. »→

D	p. .
- Catt	
\mathcal{Q}	aag
$\boldsymbol{\mathcal{U}}$	

66%	
UU / 0	

	_
101	6
~///	-()

π⇒	$\bar{\nu}_e$	$ u_{\mu}$	$\bar{\nu}_e$ -CC	ν_{μ} -CC	$\bar{\nu}_e$ -NC	ν_{μ} -NC
	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000
Positron veto	1,000,000	1,000,000	40,168	50,219	1,000,000	1,000,000
One negative track	1,000,000	1,000,000	1,154	110	13,393	12,151
20 planes	833,179	836,172	700	34	4,416	4,500
$E_e > 0.5 { m ~GeV}$	748,786	794,086	587	33	3,531	3,909
$z < 0.001~{\rm GeV}$	733,723	785,240	26	1	50	55

 $\xi ff iciency \Rightarrow 66\% 71\%$

<10^-6

Sensitivity Analysis VEI: μ^+ Beam Ve(μ bar) + e- \Rightarrow e- + Ve (Single, forward e-) $* V_{e(\mu bar)}$ -N NC background dominated by single, asymmetric $\gamma \rightarrow e - e +$ and $\pi^-/\mu^- \Rightarrow$

Conclusion \Rightarrow The cleanest separation of $\nu_e - e$ interaction among all $- \nu_{\mu} - e$, $\nu_e Bar - e$, $\nu_{\mu} bar - e$ — the leptonic channels Measurement of V_{μ} and V_{ebar} Flux and of the Ev-Scale

(1) Low- ν 0 Method

(2) Neutrino-Electron Scattering: µ-sample (IMD)

(3) Neutrino-Electron Scattering: e-sample

(4) Quasi-Elastic and Coherent- π^{+-} :

For Relative flux determination

 $\frac{\text{LOW-}\nu_0 \text{ METHOD}}{\text{EShape of } V_{\mu} \text{ or Anti-}V_{\mu} \text{ Flux}}$

• Relative flux vs. energy from low- ν_0 method:

$$N(E_{\nu}: E_{\text{HAD}} < \nu^0) = C\Phi(E_{\nu})f(\frac{\nu^0}{E_{\nu}})$$

the correction factor $f(\nu^0/E_{\nu}) \rightarrow 1$ for $\nu^0 \rightarrow 0$.

 \implies Need precise determination of the muon energy scale and good resolution at low ν values

+ Fit Near Detector $\nu_{\mu}, \bar{\nu}_{\mu}$ spectra:

- Trace secondaries through beam-elements, decay;
- Predict $\nu_{\mu}, \bar{\nu}_{\mu}$ flux by folding experiental acceptance;
- Compare predicted to measured spectra $\Longrightarrow \chi^2$ minimization

$$\frac{d^2\sigma}{dx_F dP_T^2} = f(x_F)g(P_T)h(x_F, P_T)$$

• Functional form constraint allows flux prediction close to $E_{\nu} \sim \nu^0$.

♦ Add measurements of π^{\pm}/K^{\pm} ratios from hadro-production experiments to the empirical fit of the neutrino spectra in the Near Detector

USC

Fitting Vµ and VeBar using Elastic V-Electron Scattering

* (iii) Mock Data: IMD (μ -sample) and νe (e-sample); 10⁶ $\nu \mu$ -IMD-events For now, ignore background

* (a) Start with a Trial $\mathcal{V}_{\mu} \& \mathcal{V}_{eBar}$ Flux

* (6) Simulate IMD and El-samples

* (c) Reconstruct E_µ and E_e

* (7) Compare samples (iii) with (c) : From χ^2

* (2) Vary Flux parameter; Go to (a); arrive at (b); go to (1)

* (3) Minimize $\chi^{21} \Rightarrow$ Fitted \mathcal{V}_{μ} and \mathcal{V}_{eBar} Flux

Both IMD (μ -sample) and νe (e-sample)

Observation on Measurement of V_{μ} and V_{ebar} Flux(E_{ν}) using Leptonic-Channels

- * We have presented a promising frame-work to determine \mathcal{V} -flux.
- * Only used E_{μ}/el .
- * Need to make an assessment on the error on FD/ND-($E\nu$)
- * Relative flux ($V\mu$: Vebar: $V\mu bar$: Ve) using Quasi-Elastic and Coherent- π^{+-} :

APPENDIX A: Physics Potential of HiRes $M\nu$

Below we enumerate some physics topics which can be studied with the proposed experiment and can be the subject of PhD theses. The list is not complete. It is intended to illustrate the outstanding physics potential of HiRes $M\nu$; the many theses it will engender.

About NuMI and Service to $LBL\nu$

1: The energy scale and relative flux of ν_{μ} Flux in NuMI

2: The $\overline{\nu}_{\mu}$ relative to ν_{μ} as a function of E_{ν} in NuMI

3: Relative abundance of ν_e and $\overline{\nu}_e$ -vs- ν_μ and $\overline{\nu}_\mu$ in NuMI

4: An empirical parametrization of K^0_L yield in NuMI using the $\overline{\nu}_e$ data

5: Redundancy check on the MIPP π^+ , K^+ , π^- , K^- , and K^0_L yields in NuMI using the ν_μ , $\overline{\nu}_\mu$, ν_e , and $\overline{\nu}_e$ induced charged current interactions

Neutral-Pion Production in ν -Interactions

6: Coherent and single π^0 production in $\nu\text{-induced}$ neutral current interactions

7: Multiplicity and energy distribution π^0 production in neutral current and charged current processes as a function of hadronic energy

8: The cross section of π^0 production as a function of X_F and P_T in the ν -CC interactions

Charged-Pion & Kaon and Proton & Neutron Production in $\nu\text{-Interactions}$

9: Coherent and single π^+ production in ν -induced charged current interactions

10: Coherent and single π^- production in $\overline{\nu}$ -induced charged current interactions

 Charged π/K/Proton production in the the neutral current and chaged current interactions as a function of hadronic energy

12: The cross section of $\pi^{\pm}/K^{\pm}/proton$ production as a function of X_F and P_T in the ν -CC interactions

44: Measurement of scaled momentum, rapidity, sphericity and thrust in (anti)neutrino charged current interactions

45: Search for rapidity gap in neutrino charged current interactions.

 ${\bf 46:} \ {\rm Verification \ of \ quark-hadron \ duality \ in \ (anti)neutrino \ interactions}$

47: Verification of the PCAC hypothesis at low momentum transfer

48: Determination of the behavior of $R=\sigma_L/\sigma_T$ at low momentum transfer

Nuclear Effects

49: Measurement of nuclear effects on F_2 in (anti)neutrino scattering from ratios of Pb,Fe and C targets

50: Measurement of nuclear effects on xF_3 in (anti)neutrino scattering from ratios of Pb,Fe and C targets

51: Study of (anti)shadowing in neutrino and antineutrino interactions and impact of axialvector current

52: Measurement of axial form-factors for the bound nucleons from quasi-elastic interactions on Pb, Fe and C

53: Measurement of hadron multiplicities and kinematics as a function of the atomic number

Semi-Exclusive and Exclusive Processes

54: Measurement of charmed hadron production via dilepton $(\mu^-\mu^+, \text{ and } \mu^-e^+)$ processes

55: Determination of the nucleon strange sea using the (anti)neutrino charm production and QCD evolution

56: Measurement of ${\rm J}/\psi$ production in neutral current interactions

57: Measurement of K_S^0 , Λ and $\overline{\Lambda}$ production in neutrino CC processes

58: Measurement of K^0_S , Λ and $\overline{\Lambda}$ production in antineutrino CC processes

59: Measurement of K^0_S , Λ and $\overline{\Lambda}$ production in (anti)neutrino NC processes

60: Measurement of exclusive strange hadron and hyperon production in (anti)neutrino charged

13: Measurement of neutron production via charge-exchange process in the CC and NC interactions

Neutrino-Electron Scattering

14: Measurement of inverse muon decay and absolute normalization of the NuMI flux above $E_\nu>11~{\rm GeV}$ with $\le1\%$ precision

15: Search for the lepton violating ν

μ − e⁻ CC interaction
16: The ν_μ-e⁻ and ν

μ-e⁻ neutral current interaction and determination of sin²θ_W

17: Measurement of the chiral couplings, g_L and g_R using the ν_{μ} - e^- and $\overline{\nu}_{\mu}$ - e^- neutral current interactions

ν -Nucleon Neutral Current Scattering

18: Measurement of neutral current to charged current ratio, $R^{\nu},$ as a function of hadronic energy in the range $0.25 \leq E_{Had} \leq 20~{\rm GeV}$

19: Measurement of neutral current to charged current ratio, R^{ν} and $R^{\overline{\nu}}$, for $E_{Had} \geq 3$ GeV and determination of the electroweak parameters $\sin^2 \theta_W$ and ρ .

Non-Scaling Charged and Neutral Current Processes

20: Measurement of ν_{μ} quasi-elastic CC interaction

21: Measurement of $\overline{\nu}_{\mu}$ quasi-elastic CC interaction

22: Determination of M_A from the QE cross section and the shape of the kinematic variables $(Q^2, Y_{bj}, \text{etc.})$

23: Measurement of the axial form-factor of the nucleon from quasi-elastic interactions

24: Measurement of ν_{μ} induced resonance processes

25: Measurement of $\overline{\nu}_{\mu}$ induced resonance processes

26: Measurement of resonant form-factors and structure functions

 ${\bf 27:}$ Study of the transition between scaling and non-scaling processes

28: Constraints on the Fermi-motion of the nucleons using the 2-track topology of neutrino

and neutral current

61: Measurement of the Λ and $\overline{\Lambda}$ polarization in neutrino charged current interactions

62: Measurement of the Λ and $\overline{\Lambda}$ polarization in antineutrino charged current interactions

63: Measurement of the Λ and $\overline{\Lambda}$ polarization in (anti)neutrino neutral current interactions

64: Inclusive production of rho0(770), f0(980) and f2(1270) mesons in (anti)neutrino charged current interactions

65: Measurement of backward going protons and pions in neutrino CC interactions and constraints on nuclear processes

66: D*+ production in neutrino charged current interactions

67: Determination of the D⁰, D⁺, D_s, Λ_c production fractions in (anti)neutrino interactions
 68: Production of K*(892)+- vector mesons and their spin alignment in neutrino interactions

Search for New Physics and Exotic Phenomena

69: Search for heavy neutrinos using electronic, muonic and hadronic decays

70: Search for eV (pseudo)scalar penetrating particles

71: Search for the exotic Theta+ resonance in the neutrino charged current interactions

72: Search for heavy neutrinos mixing with tau neutrinos

73: Search for an anomalous gauge boson in pi0 decays at the 120 GeV p-NuMI target

74: Search for anomaly mediated neutrino induced photons

75: Search for the magnetic moment of neutrinos

76: A test of $\nu_{\mu} - \nu_e$ universality down to 10^{-4} level

77: A test of $\nu_{\mu} – \nu_{\tau}$ coupling down to 10^{-5} level

quasi-elastic interactions

29: Coherent ρ^{\pm} production in ν -induced charged current interactions

30: Neutral Current elastic scattering on proton $\nu(\overline{\nu}_{\mu})p \rightarrow \nu(\overline{\nu}_{\mu})p$

31: Measurement of the strange quark contribution to the nucleon spin ΔS

 ${\bf 32:}$ Determination of the weak mixing angle from NC elastic scattering off protons

Inclusive Charged Current Processes

33: Measurement of the inclusive ν_{μ} charged current cross-section in the range $0.5 \leq E_{\nu} \leq 40~{\rm GeV}$

34: Measurement of the inclusive $\overline{\nu}_{\mu}$ charged current cross-section in the range $0.5 \le E_{\nu} \le 40$ GeV

35: Measurement of the inclusive ν_e and $\overline{\nu}_e$ charged current cross-section in the range $0.5 \le E_{\nu} \le 40$ GeV

36: Measurement of the differential ν_{μ} charged current cross-section as a function of x_{bj} , y_{bj} and E_{ν} .

37: Measurement of the differential $\overline{\nu}_{\mu}$ charged current cross-section as a function of x_{bj} , y_{bj} and E_{ν} .

38: Determination of xF_3 and F_2 structure functions in ν_μ charged current interactions and the QCD evolution

39: Determination of xF_3 and F_2 structure functions in $\overline{\nu}_{\mu}$ charged current interactions and the QCD evolution

40: Measurement of the longitudinal structure function, F_L , in ν_μ and $\overline{\nu}_\mu$ charged current interactions and test of QCD

41: Determination of the gluon structure function, bound-state and higher twist effects

42: Precise tests of sum-rules in QPM/QCD

43: Measurement of ν_{μ} and $\overline{\nu}_{\mu}$ charged current differential cross-section at large- x_{bj} and $-y_{bj}$

77 HiResMnu Topics listed

Many topics are pertinent to oscillation physics

Some non-oscillation topics might lead to discovery

South Carolina Group

HIRESMNU: RLS

Carolina Gr. with Dave Lee, Bill Louis, C.Mauger [LANL] with Carolina Gr.

HIRESMNU-idea comprises 4 sub-detectors. *Cost:* Prototype+Material+Labor [+Contigency]

- * Straw Tube Ttracker (inside the B-Field): \$23.5M [Contigency(40%)]
 - ⁴⁶Based on ATLAS, COMPASS, and the NOMAD-TRD designs
 - A critical part \Rightarrow compromises, need detailed studies
- * & Galorimeter (inside the B-Field): \$18.6M [Contigency(43%)]
 - Motivated by the T2K ECAL
 - Downstream (DS \Rightarrow \$4.9M), Barrel-Up (Side), Barrel-Dw (Side), & Upstream (UP) calorimeters

* Muon Detector: \$8.6M [Contigency(45%)]

- RPC's and Absorbers
- ⁴⁶Instrumenting the dipole & two muon stations, outside the magnet, at the downstream end

* Dipole Magnet: ~\$22.5M [Contigency(26%)]

- Based on UAI (& LHCb) designs (but no beam-tube!)
- Design linked to the STT and ECal

Total (Prototype + Material + Labour + Contingency) \Rightarrow \$74.15 M

Future Plans

* Error in FD/ND

* Estimation of backgrounds to

Ve ≫→ Vµ Ve ≫→ V⊤

* Synergy between the LBNE and Nu-Factory Efforts // support ?? < Biggest hurdle

Backup Slides

Salient steps of the IMD-Analysis

	ν_{μ} -IMD	ν_{μ} -CC	ν_{μ} -CCQE	$\bar{\nu}_e$ -CC	ν_{μ} -NC	$\bar{\nu}_e$ -NC
	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000	1,000,000
1 negative Track	1,000,000	67,851	414,856	102,961	14,219	14,679
Neutral Veto $(E_{\gamma}\geqq 0.1~{\rm GeV})$	1,000,000	34,660	411,019	57,765	4,722	5,891
Neutral Veto ($E_{neutron} \gtrless 0.5 \text{ GeV}$)	1,000,000	20,703	375,027	33,536	2,454	3,348
Neutral Veto ($E_{K_S,K_L} \gtrless 0.5 \text{ GeV}$)	1,000,000	20,266	375,027	32,759	2,111	2,972
$E>11~{ m GeV}$	<mark>983,3</mark> 55	13,544	257,736	661	341	419
$\Im \mu < 0.001 \text{ GeV}$	979,403	831	16,614	49	2	3
S ⊮ < 0.0001 GeV	959,227	50	829	8	0	2

Efficiency \Rightarrow 95% 5e-05

* Neutral Veto: (i) E $\gamma \ge 0.1$ GeV (ii) En/K0 ≥ 0.5 GeV

* Diacritical Kinematic Variable: $\varsigma \mu = E \mu (1 - \cos \vartheta \mu)$

* Composition of surviving ν_{μ} -CC \Rightarrow

\mathbf{QE}	68.1%
DIS	1.1%
Res	24.9%
Others	5.9%

Fitting ν_{μ} and ν_{eBar} flux as a function of $E\nu$

- * $\not(i)$ Mock Data: simulate a signal/back --- IMD (μ -sample), or νe (e-sample), or ν_{μ} -N CC
- * (ii) Reconstruct (parametric smearing)
- * (iii) Subject it to analysis
 - * (a) Start with a Trial Flux
 - * (6) Fold in Cross-section
 - * [c] Fold in Acceptance (Efficiency-Smearing); add background
- * (1) Compare samples (iii) with (c) : From χ^2
- * (2) Vary Flux parameter; Go to (a); arrive at (c); go to (1)
- * (3) Minimize $\chi^{23} \Rightarrow$ Fitted Flux

Missing: Determination of Beam-Divergence using ${\mathcal V}$ -Data

Systematic-Errors in Low-V0 Relative Flux: Vµ & Anti-Vµ

✓Variation in V0-cut
✓Variation in V0-correction
✓Systematic shift in Ehad-scale
✓Vary σ(QE) ±10%
✓Vary σ(Res) ±10%
✓Vary σ(DIS) ±10%
✓Vary functional-forms
✓Systematic shift in Emu-scale

- The HiResM

 → Reconstruction of the e's as bending tracks NOT showers
- ◆ Electron identification against charged hadrons from both TR and dE/dx
 ⇒ TR π rejection of 10⁻³ for ε ~ 90%
- Use multi-dimensional likelihood functions incorporating the full event kinematics to reject non-prompt backgrounds (π⁰ in ν_µ CC and NC)
 - \implies On average $\varepsilon = 55\%$ and $\eta = 99\%$ for ν_e CC at LBNE

VeBar-CC Sensitivity: Eff ~55% and Purity ~ 99%

* v-NC & CC $\implies \pi 0 \implies \gamma \gamma$ ~50% of the $\gamma \implies e+e-$ will convert in the STT, away from the primary vertex.

* γ-Identification:
* e-/e+ ID:TR
* Kinematic cut: Mass, Opening angle

> At least one converted γ in STT (Reconstructed e- & e+; e- or e+ traverse ≥ 6 Mods) > Another γ in the Downstream & Side ECAL

PRECISION MEASUREMENTS

 ♦ Ratio of NC and CC in both *v*-N and *v*-N Deep Inelastic Scattering. Paschos-Wolfenstein relation allows a reduction of systematic uncertainties:

$$R^{-} \stackrel{\text{def}}{\equiv} \frac{\sigma_{\text{NC}}^{\nu} - \sigma_{\text{NC}}^{\bar{\nu}}}{\sigma_{\text{CC}}^{\nu} - \sigma_{\text{CC}}^{\bar{\nu}}}$$

- $\delta sin^2 \theta_W / sin^2 \theta_W = 0.1\%$ \leftarrow Goal
- 19(6)×10⁶ NC selected events in $\nu(\bar{\nu})$ mode
- \implies Dominated by systematics

Source of uncertainty	$\delta \mathcal{X}/\mathcal{X}$	$\delta R^{ u}/R^{ u}$	$\delta R^{ar{ u}}/R^{ar{ u}}$	$\delta \mathcal{X}/\mathcal{X}$	V -Factory
Data statistics	0.00593	0.00176	0.00393		
Monte Carlo statistics	0.00044	0.00015	0.00025		
Total Statistics	0.00593	0.00176	0.00393	0.0008	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
$\nu_e, \bar{\nu}_e$ flux (~ 1.7%)	0.00171	0.00064	0.00109	0.0001	
Energy measurement	0.00079	0.00038	0.00059	0.0004	᠉→ 0.0000
Shower length model	0.00119	0.00054	0.00049	n.a.	
Counter efficiency, noise	0.00101	0.00036	0.00015	n.a.	
Interaction vertex	0.00132	0.00056	0.00042	n.a.	᠉→ 0.0000
Other				0.0008	0.0000
Experimental systematics	0.00277	0.00112	0.00141	0.0010	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
$d,s \rightarrow c, s-sea$	0.00206	0.00227	0.00454	0.0011	
Charm sea	0.00044	0.00013	0.00010	n.a.	»→ Fig
$r = \sigma^{ar{ u}} / \sigma^{ u}$	0.00097	0.00018	0.00064	0.0005	
Radiative corrections	0.00048	0.00013	0.00015	0.0001	<i>"" \ 0.0000</i>
Non-isoscalar target	0.00022	0.00010	0.00010	N.A.	
Higher twists	0.00061	0.00031	0.00032	0.0003	
R_L	0.00141	0.00115	0.00249	$(F_2, F_T, xF_3) \ 0.0005$	>>>> 0.0003
Model systematics	0.00281	0.00258	0.00523	0.0014	»→ 0.000?
TOTAL	0.00711	0.00332	0.00672	0.0019	»→ 0.000? »→ 0.0009

Table 4: Summary of uncertainties on the extraction of the weak mixing angle $(\mathcal{X} = \sin^2 \theta_W)$ based upon the Pascos-Wolfenstein relation. The first three columns refer to the published NuTeV errors [12] while the last column indicates the corresponding projection for our experiment.

TO BE PRESENTED AT DIS 2011

Statistical and systematic uncertainties ($\leq 2.5\%$)

20

NC ELASTIC SCATTERING *neutrino-nucleus is sensitive to the strange quark* contribution to nucleon spin, Δs , through axial-vector form factor G_1 :

$$G_1 = \left[-\frac{G_A}{2}\tau_z + \frac{G_A^s}{2} \right]$$

At $Q^2 \to 0$ we have $d\sigma/dQ^2 \propto G_1^2$ and the strange axial form factor $G_A^s \to \Delta s$.

• Measure NC/CC RATIOS as a function of Q^2 to reduce systematics ($\sin^2 \theta_W$ as well):

$$R_{\nu} = \frac{\sigma(\nu p \to \nu p)}{\sigma(\nu n \to \mu^{-} p)}; \qquad R_{\bar{\nu}} = \frac{\sigma(\bar{\nu} p \to \bar{\nu} p)}{\sigma(\bar{\nu} p \to \mu^{+} n)}$$

- Statistical precison in HiResM ν will be at the 10^{-3} level: $\sim 1.5 \times 10^6 \nu$ NC and $\sim 800k \bar{\nu}$ NC events
- High resolution tracking for protons down to momenta of 250 MeV/c in HiResM ν allows to access low Q^2 values and reduce backgrounds;
- A precision measurement over an extended Q^2 range reduces systematic uncertainties from the Q^2 dependence of vector $(F_{1,2}^s)$ and axial (G_A^s) strange form factors;
- Nuclear effects are expected to largely cancel in the ratios R_{ν} and $R_{\bar{\nu}}$;
- Need to check neutron background.