Appearance Physics with a 2 GeV Muon Storage Ring

Christopher Tunnell JAI, U. Oxford

Right handed neutrinos (since neutrinos have mass)? Dark matter?

Review

Steriles: in math $U = R_{34}R_{24}R_{14}$ $\cos(\theta_{14}) \qquad 0 \qquad 0 \qquad \sin(\theta_{14})$

 $\begin{pmatrix} -\sin(\theta_{14})\sin(\theta_{24}) & \cos(\theta_{24}) & 0 & \sin(\theta_{24})\cos(\theta_{14}) \\ -\sin(\theta_{14})\sin(\theta_{34})\cos(\theta_{24}) & -\sin(\theta_{24})\sin(\theta_{34}) & \cos(\theta_{34}) & \sin(\theta_{34})\cos(\theta_{14})\cos(\theta_{24}) \\ -\sin(\theta_{14})\cos(\theta_{24})\cos(\theta_{34}) & -\sin(\theta_{24})\cos(\theta_{34}) & -\sin(\theta_{34})\cos(\theta_{14})\cos(\theta_{24})\cos(\theta_{34}) \end{pmatrix}$

Thursday, 19 April 12

Appearance-only (though disappearance good too!)

$$Pr[e \to \mu] = 4|U_{e4}|^2|U_{\mu4}|^2\sin^2(\frac{\Delta m_{41}^2 L}{4E})$$

Raw Event Rates

Channel	$N_{\rm osc.}$	$N_{ m null}$	Diff.	$(N_{\rm osc.} - N_{\rm null})/\sqrt{N_{\rm null}}$
$\nu_e \rightarrow \nu_\mu \ \mathrm{CC}$	191	0	∞	∞
$\bar{\nu}_{\mu} \to \bar{\nu}_{\mu} \mathrm{NC}$	34817	35993	-3.3%	-6.2
$\nu_e \rightarrow \nu_e \mathrm{NC}$	65393	68552	-4.6%	-12.1
$\bar{\nu}_{\mu} \to \bar{\nu}_{\mu} { m CC}$	85117	87943	-3.2%	-9.5
$\nu_e \rightarrow \nu_e \ \mathrm{CC}$	171196	179223	-4.5%	-19.0
NC sum	_	_	_	13.4

	Channel	$N_{\rm osc.}$	$N_{ m null}$	Diff.	$(N_{\rm osc.} - N_{\rm null})/\sqrt{N_{\rm null}}$
	$\bar{\nu}_e \to \bar{\nu}_\mu \ \mathrm{CC}$	72	0	∞	\sim
	$\bar{\nu}_e \to \bar{\nu}_e \mathrm{NC}$	28325	29613	-4.3%	-7.5
U	$\bar{\nu}_e \to \bar{\nu}_e \ \mathrm{CC}$	68065	71105	-4.3%	-11.4
	$\nu_{\mu} \rightarrow \nu_{\mu} \mathrm{NC}$	75742	78457	-3.5%	-9.7
	$\nu_{\mu} \rightarrow \nu_{\mu} \ \mathrm{CC}$	204381	211490	-3.4%	-15.5
	NC sum	_	_	_	12.1

 μ^+

How many muons?

- •5 years running w/ PIP
- I00 kilowatt target station
- 10% energy spread
- •<u>Very</u> conservative
- •See my note...

The VLENF Parameterization

"Golden Channel"/ CPT(LSND) Prob $[\mu \rightarrow e] = \sin^2 2\theta \sin^2 (\Delta m^2 L/4E)$

Accelerator v.s. Detector

Disappearance

0.9

 10^{-4}

 10^{-4}

 10^{-4}

0.9

 10^{-4}

 μ Disappearance

 μ Appearance

 $\nu_{\mu} \rightarrow \nu_{\mu}$

 $\nu_e \rightarrow \nu_\mu$

 $\nu_X \to \nu_X$

$$\Pr[\nu_{\alpha} \rightarrow \nu_{\alpha}] = 1 - \left[4|U_{\alpha4}|^{2}(1-|U_{\alpha4}|^{2})\right]\sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E}\right)$$
$$= \sin^{2}(2\theta_{\alpha\alpha})\sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E}\right)$$
$$\Pr[\nu_{e} \rightarrow \nu_{\mu}] = 4|U_{e4}|^{2}|U_{\mu4}|^{2}\sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E}\right)$$
$$= \sin^{2}(2\theta_{e\mu})\sin^{2}\left(\frac{\Delta m_{41}^{2}L}{4E}\right)$$

Thursday, 19 April 12

Conclusions

- Lots of theoretical (dark matter, righthanded neutrinos) and even some experimental motivation
- "Double suppressed" golden channel covers LSND range and is able to explore a different mass steriles
- Disappearance, which must be there, good too (See Walter's talk)
- Comprehensive facility to study steriles