MATTER NSI'S AT THE NEUTRINO FACTORY

Andrea Donini, IFT (UAM/CSIC) & IFIC (UV/CSIC) In collaboration with: P. Coloma (IFT, Madrid) J. López Pavón (IPPP, Durham) H. Minakata (TMU, Tokyo)

NSI'S

A Charles and the second of the state

 $\mathcal{L}_{eff} = \mathcal{L}^{SM} + \mathcal{L}_{\nu}^{mass} + \sum c_i O_i^{p,d,f}$

We want to the second second

 $\mathcal{L}_{eff} = \mathcal{L}^{SM} + \mathcal{L}_{\nu}^{mass} + \sum c_i O_i^{p,d,f}$

NSI@production

 $O^p: (\epsilon^p_{e\alpha}) \bar{\mu} \gamma^\mu_L \nu_\mu) (\bar{\nu}_\alpha \gamma_{\mu L} e)$

 $\mu^- \to e^- \nu_\mu \bar{\nu}_\alpha$

Wind the second second a second

 $\mathcal{L}_{eff} = \mathcal{L}^{SM} + \mathcal{L}_{\nu}^{mass} + \sum c_i O_i^{p,d,f}$

NSI@production

$$O^p: (\epsilon^p_{e\alpha}) \bar{\mu} \gamma^\mu_L \nu_\mu) (\bar{\nu}_\alpha \gamma_{\mu L} e)$$

$$\left(\mu^- \to e^- \nu_\mu \bar{\nu}_\alpha \right)$$

NSI@detection

$$O^d: \epsilon^d_{\mu\alpha} (\bar{\nu}_{\alpha} \gamma^{\mu}_L \mu) (\bar{d} \gamma_{\mu L} u)$$

$$\left(\nu_{\alpha}N \to \mu^{-}N' \right)$$

 $\mathcal{L}_{eff} = \mathcal{L}^{SM} + \mathcal{L}_{\nu}^{mass} + \sum c_i O_i^{p,d,f}$

NSI@production

$$O^p : (\epsilon^p_{e\alpha}) \bar{\mu} \gamma^\mu_L \nu_\mu) (\bar{\nu}_\alpha \gamma_{\mu L} e)$$

A Charles and the second of the

$$\left(\mu^- \to e^- \nu_\mu \bar{\nu}_\alpha \right)$$

NSI@detection

$$O^d: \epsilon^d_{\mu\alpha} (\bar{\nu}_{\alpha} \gamma^{\mu}_L \mu) (\bar{d} \gamma_{\mu L} u)$$

 $\nu_{\alpha}N \to \mu^- N'$

NSI@propagation

$$O^f: \epsilon^f_{\alpha\beta}(\bar{\nu}_{\alpha}\gamma^{\mu}_L\nu_{\beta})(\bar{f}\gamma_{\mu}f)$$

 $\nu_{\alpha}f \rightarrow \nu_{\beta}f$

NEAR DETECTORS AND NSI'S

A Charles and the second of the state

Near Detectors: S. Antusch *et al*, arXiv:1005.0756 [hep-ph] MINSIS workshop report, arXiv:1009.0476 [hep-ph]

NSI@production

$$\mu^- \to e^- \nu_\mu \bar{\nu}_\alpha$$

NSI@detection

$$\nu_{\alpha}N \to \mu^- N'$$

NSI@propagation

$$\nu_{\alpha}f \to \nu_{\beta}f$$

NSI'S IN MATTER

$$A^{NSI} = A \begin{pmatrix} 1 + \epsilon^m_{ee} & \epsilon^m_{e\mu} & \epsilon^m_{e\tau} \\ \epsilon^{m*}_{e\mu} & \epsilon^m_{\mu\mu} & \epsilon^m_{\mu\tau} \\ \epsilon^{m*}_{e\tau} & \epsilon^{m*}_{\mu\tau} & \epsilon^m_{\tau\tau} \end{pmatrix}$$

States a contract of the

Bounds on matter NSI's are rather weak

$$|\varepsilon_{\alpha\beta}^{\oplus}| < \left(\begin{array}{cccc} 4.2 & 0.33 & 3.0\\ 0.33 & 0.068 & 0.33\\ 3.0 & 0.33 & 21 \end{array}\right)$$

$$|\varepsilon_{\alpha\beta}^{\odot}| < \left(\begin{array}{cccc} 2.5 & 0.21 & 1.7 \\ 0.21 & 0.046 & 0.21 \\ 1.7 & 0.21 & 9.0 \end{array}\right)$$

for neutral Earth-like matter

for neutral solar-like matter

E. Fernández Martínez, AIP Conf. Proc. 1222 (2010) 150

NSI'S IN MATTER

$$A^{NSI} = A \begin{pmatrix} 1 + \epsilon^m_{ee} & \epsilon^m_{e\mu} & \epsilon^m_{e\tau} \\ \epsilon^{m*}_{e\mu} & \epsilon^m_{\mu\mu} & \epsilon^m_{\mu\tau} \\ \epsilon^{m*}_{e\tau} & \epsilon^{m*}_{\mu\tau} & \epsilon^m_{\tau\tau} \end{pmatrix}$$

Automotive and the state

Diagonal
$$\begin{cases} P_{\alpha\beta}(\epsilon_{ee} - \epsilon_{\tau\tau}) \sim \mathcal{O}(\varepsilon^3) !! \\ P_{\alpha\beta}(\epsilon_{\mu\mu} - \epsilon_{\tau\tau}) \sim \mathcal{O}(\varepsilon^2) \end{cases}$$

$$\begin{array}{l} \text{Off-} \\ \text{diagonal} \\ \text{sector} \end{array} \left\{ \begin{array}{l} P_{e\mu,e\tau} = P_{e\mu,e\tau}^{std} + \mathcal{O}(\varepsilon^2) & (\epsilon_{e\mu}, \, \epsilon_{e\tau}, \, \epsilon_{\mu\tau}) \\ P_{\mu\mu,\mu\tau} = P_{\mu\mu,\mu\tau}^{std} + \mathcal{O}(\epsilon_{\mu\tau}) + \mathcal{O}(\varepsilon^2) \end{array} \right.$$

T. Kikuchi, H. Minakata and S. Uchinami, arXiv:0809.3312

CORRELATIONS IN NSI'S

Matter NSI parameters have been studied in many papers, even using the Neutrino Factory

and Ander Man and Arts

CORRELATIONS IN NSI'S

Matter NSI parameters have been studied in many papers, even using the Neutrino Factory We want to study the correlations between them. To do this, we need to study MANY parameters at the same time

CORRELATIONS IN NSI'S

Matter NSI parameters have been studied in many papers, even using the Neutrino Factory We want to study the correlations between them. To do this, we need to study MANY parameters at

the same time

This can be done using MonteCUBES, a MonteCarlo Markov Chain program built on top of GLOBES

M. Blennow and E. Fernández Martínez, arXiv:0903.3985

NSI'S AT THE NUFACT

Large matter

effects!

- Line and Black of the second

- Long baseline
- High energies

NSI'S AT THE NUFACT

- Long baseline
- High energies

Large matter effects!

Multi-channel facility

Lines and Block of Mars of Co

NSI'S AT THE NUFACT

Long baseline
High energies
Large matter effects!

Multi-channel facility

• But...what if θ_{13} is measured soon?

 Open possibility: re-optimization of NF to search for New Physics?

- Setup I: The "baseline" IDS 25 GeV NF
- Setup 2: Higher energy: IDS 50 GeV NF
- Setup 3: One-baseline, 50 GeV NF; with tau-detector

IDS25 AND IDS50

Automotion and States

IDS25:

- 25 GeV muons;
- Two 50 kton MIND detectors (arXiv:1004.0358 [hep-ex]):
 - @4000 km: good for CP
 - @7500 km: good for $\, heta_{13}$ and hierarchy (MB)
- $5 imes 10^{20}$ useful muon decays/year/baseline/polarity

IDS50: 50 GeV upgrade of the IDS25

ONE BASELINE: IB50

Automotion and the second

• 1B50:

- 50 GeV muons:

A composite detector @ 4000 km:

50 kton MIND to detect muons;

4 kton MECC to detect taus (arXiv:hep-ph/0305185).

 Double flux: 10²¹ useful muon decays/year/polarity

- (1) Impact of NSI on the sensitivity to θ_{13}
- (2) Sensitivity to $|\epsilon_{\alpha\beta}|$
- (3) Study of the CP-violating phases (δ,φ_{eµ},φ_{eτ}) for |ε_{eµ}|,|ε_{eτ}|< 10⁻² (comparable to θ₁₃< 3°): maximal correlation between the three phases!

IMPACT ON Θ_{13}

CALLER SHOLL CANTER WE'S

No correlation at all with $\epsilon_{\mu\tau}$ Worsening exclusively due to $\epsilon_{\alpha\alpha}$

(Marginalization performed over all standard parameters)

IMPACT ON Θ_{13}

distribut warrat with

Strong correlation due to simultaneous appearance in golden channel

(Marginalization performed over all standard parameters)

IMPACT ON Θ_{13}

As in the standard case, two baselines are better than two detectors

Wind the Constant Street of Charles

A Control Contractions and a Cherry

Sizable effect due to nonzero θ_{13}

- Stores Andrew Store - Martin St. B.

Effect due to the $\delta \theta_{23}$

DISAPPEARANCE CHANNEL

All print a france and the second of the

DISAPPEARANCE CHANNEL

- The same and the second of the

APPEARANCE CHANNEL(S)

Correlations with ε_{eT} are not extremely important

APPEARANCE CHANNEL(S)

Anderson and the state

Sensitivity to ε_{eT}

Two baselines are better. But with 50 GeV, even more!

Correlations with $\varepsilon_{e\mu}$ are not extremely important

- We have measured the 3D CP discovery potential: the region of the (δ,φ_{eµ},φ_{eτ}) parameter space for which a CP-violating signal can be distinguished from a CP-conserving one
- This corresponds to check if, given the input triple $(\delta, \phi_{e\mu}, \phi_{e\tau})$, the χ^2 at the CP-conserving points $\{(0,0,0), (0,0,\pi), (0,\pi,0), (\pi,0,0), (0,\pi,\pi), (\pi,0,\pi), (\pi,\pi,0), (\pi,\pi,\pi)\}$ is larger than a given (3dof's) CL

- We have measured the 3D CP discovery potential: the region of the (δ,φ_{eµ},φ_{eτ}) parameter space for which a CP-violating signal can be distinguished from a CP-conserving one
- This corresponds to check if, given the input triple $(\delta, \phi_{e\mu}, \phi_{e\tau})$, the χ^2 at the CP-conserving points $\{(0,0,0), (0,0,\pi), (0,\pi,0), (\pi,0,0), (0,\pi,\pi), (\pi,0,\pi), (\pi,\pi,0), (\pi,\pi,\pi)\}$ is larger than a given (3dof's) CL

 $\chi^2_{CPC}(\theta_{13}, \bar{\theta}_{13}; \{\bar{\phi}\}) = \min_{\{\phi\}_{CPC}} \left(\chi^2(\theta_{13}, \bar{\theta}_{13}; \{\phi\}_{CPC}, \{\bar{\phi}\}) \right)$

W.Winter, Phys. Lett. B671 (2009) 77, arXiv:0808.3583

And And And And And And And

The 3D CP discovery potential strongly depends on $|\epsilon_{e\mu}|, |\epsilon_{e\tau}|$

The Alabation of Arriver of Para

The 3D CP discovery potential strongly depends on $|\epsilon_{e\mu}|, |\epsilon_{e\tau}|$

When $|\epsilon_{e\mu}| \approx |\epsilon_{e\tau}|$, the former dominates and the correlations with δ are rather simple.

The 3D CP discovery potential strongly depends on $|\epsilon_{e\mu}|, |\epsilon_{e\tau}|$

When $|\epsilon_{e\mu}| \approx |\epsilon_{e\tau}|$, the former dominates and the correlations with δ are rather simple.

The 3D CP discovery potential looks like a mozzarella cheese

The 3D CP discovery potential strongly depends on $|\epsilon_{e\mu}|, |\epsilon_{e\tau}|$

When $|\epsilon_{e\mu}| << |\epsilon_{e\tau}|$, the two parameters are competitive and very involved correlations between them and δ arise.

The 3D CP discovery potential strongly depends on $|\epsilon_{e\mu}|, |\epsilon_{e\tau}|$

When $|\epsilon_{e\mu}| << |\epsilon_{e\tau}|$, the two parameters are competitive and very involved correlations between them and δ arise.

The 3D CP discovery potential looks like an emmental cheese

The 3D CP discovery potential also depends on θ_{13} We consider two possibilities:

 $\theta_{13} > 3^{\circ}$, such that it can be tested at T2K and/or Double Chooz; in this case, we fix θ_{13} and cut slices of the cheese along δ

 $\theta_{13} < 3^{\circ}$, such that it cannot be tested at T2K and/or Double Chooz; in this case, we marginalize over θ_{13} (no time to discuss this case in detail)

SYMMETRIC NSI'S

- Lord Ander Made owned a Color

 $|\epsilon_{e\mu}| \approx |\epsilon_{e\tau}| = 10^{-2}$

$|\epsilon_{e\mu}| \approx |\epsilon_{e\tau}| = 10^{-3}$

99% CL, 3 dof's

 $\theta_{13} = 3^{\circ}$ $\delta = 0$

SYMMETRIC NSI'S

 $|\epsilon_{e\mu}| \approx |\epsilon_{e\tau}| = 10^{-2}$

$|\epsilon_{e\mu}| \approx |\epsilon_{e\tau}| = 10^{-3}$

SYMMETRIC NSI'S

And And Black And A CA

 $|\epsilon_{e\mu}| \approx |\epsilon_{e\tau}| = 10^{-2}$

$|\epsilon_{e\mu}| \approx |\epsilon_{e\tau}| = 10^{-3}$

99% CL, 3 dof's

 $\theta_{13} = 3^{\circ}$ $\delta = 35^{\circ}$

and the second of the

$|\varepsilon_{e\mu}| = 10^{-3}, |\varepsilon_{e\tau}| = 10^{-2}$

99% CL, 3 dof's

 $\theta_{13} = 3^{\circ}$ $\delta = 0$

And Black works with

$|\varepsilon_{e\mu}| = 10^{-3}, |\varepsilon_{e\tau}| = 10^{-2}$

State Barren will be and

$|\varepsilon_{e\mu}| = 10^{-3}, |\varepsilon_{e\tau}| = 10^{-2}$

99% CL, 3 dof's

 $\theta_{13} = 3^{\circ}$ $\delta = 35^{\circ}$

$|\varepsilon_{e\mu}| = 10^{-3}, |\varepsilon_{e\tau}| = 10^{-2}$

99% CL, 3 dof's

 $\theta_{13} = 3^{\circ}$ $\delta = 65^{\circ}$

3D CP-FRACTION

Land and Block with a Side

2D CP-fraction

W.Winter, arXiv:0808.3583

3D CP-FRACTION

Louis and Block owners a Course to

2D CP-fraction

We have studied this region but with two active NSI parameters [ε_{eµ}], [ε_{eτ}]

W.Winter, arXiv:0808.3583

3D CP-FRACTION

CONCLUSIONS, I

Sensitivity to NSI parameters at the IDS50 (IB50)

- sensitivity to $|\varepsilon_{\mu\tau}|, |\varepsilon_{e\mu}|, |\varepsilon_{e\tau}| \le 10^{-3}$ (correlations are not very important)
- sensitivity to ε_{ee} - $\varepsilon_{TT} \leq 10^{-1}$ (matter uncertainty), $\varepsilon_{\mu\mu}$ - $\varepsilon_{TT} \leq 10^{-2}$ (importance of θ_{23} and $\delta\theta_{23}$)

• sensitivity to θ_{13} worsens due to $\epsilon_{\alpha\alpha}$, $\epsilon_{e\mu}$, $\epsilon_{e\tau}$

CONCLUSIONS,2

an and the second of the

- We have studied the 3D discovery potential in $(\delta, \varphi_{e\mu}, \varphi_{e\tau})$ for $|\epsilon_{e\mu}|, |\epsilon_{e\tau}| < 10^{-2} (\theta_{13} < 3^{\circ})$
- If $|\varepsilon_{e\mu}| \approx |\varepsilon_{e\tau}|$, the former dominates and the correlations with δ are rather simple ("mozzarella shape")
- If $|\varepsilon_{e\mu}| << |\varepsilon_{e\tau}|$, the two parameters are competitive, involved correlations between them and δ arise ("emmental shape")
- A 50 GeV Neutrino Factory (either one or two-baselined) is very powerful and could discover CP violation in > 20% of the parameter space for $|\varepsilon_{e\mu}| = 10^{-3}$, $|\varepsilon_{e\tau}| < 10^{-2}$ even for vanishing θ 13

BACKUP

- 11 AT 12

Coldrine & Laboratory has

al and the second second second second second

PRIORS

For NSI parameters: we have gaussian priors with standard deviations around zero for the moduli; flat priors for the phases.

$ \epsilon_{ee} $	0.75	$ \epsilon_{e\mu} $	0.01
$ \epsilon_{\mu\mu} $	0.05	$ \epsilon_{e\tau} $	0.25
$ \epsilon_{\tau\tau} $	0.4	$ \epsilon_{\mu\tau} $	0.25

For standard parameters: we include a 5% error over the PREM density profile, and a 10% error over the atmospheric parameters. Flat priors for θ_{13} and δ .

OTHER PLOTS, I

Land and the states of the

L = 4000 Km + 7500 Km

OTHER PLOTS, 2

And White a second with the

 How good is the hypothesis that taucontaminated data can be fitted with the golden muon distribution, only?

 The answer is: VERY POOR!!!!!!

L = 4000 Km + 7500 Km