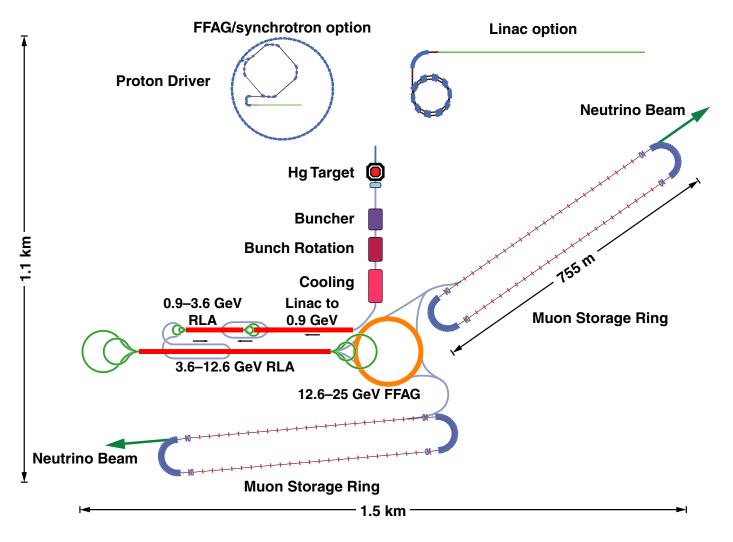
Review of the Accelerator Baseline

J. Scott Berg Brookhaven National Laboratory IDS-NF Plenary Meeting 24 September 2010

Subparts of Accelerator System


- OProton Driver
- Target
- Front End
- Lower energy acceleration: Linac/RLAs
 Final acceleration: FFAG
 Decay ring

Complete Accelerator Facility

Proton Driver Specifications

Beam power4 MWKinetic energy5-15 GeVBunch length1-3 nsGeometric RMS emittance $< 5 \mu m$ Repetition rate50 HzBunches3Total time for bunches $320 \mu s$

Proton Driver

- No particular baseline
- Individual sites describe how their facilities can meet the specs
- Performance is what matters
 - But excess radiation in target area unwelcome

Target

- Liquid Hg jet
- ○20 m/s velocity
- Geometry (optimized for 8 GeV)
 - □8 mm radius jet
 - Jet to solenoid axis: 96 mrad
 - Proton beam to solenoid axis: 96 mrad
 Jet/beam crossing angle: 27 mrad

Front End

Start with Study IIa front end

20 T field at target, tapering down
"Neuffer" buncher and phase rotation
Ionization cooling

Buncher and phase rotation improved

□ Higher (1.5 T) asymptotic field in capture

Ocooling uses 201.25 MHz warm RF

Higher frequencies in buncher/phase rotation

Low Energy Acceleration

 Normalized acceptances □ 30 mm transverse 150 mm longitudinal \circ Stages □ Linac to 0.9 GeV □4.5 pass RLAs to 3.6 GeV and 12.6 GeV ○201.25 MHz superconducting RF

Acceleration to 25 GeV FFAG

- FDF triplet ring, 5 m long drifts
- ○667 m circumference
- Combined function superconduting magnets
- O About 11.5 turns
- 01.2 GV of 201.25 MHz superconducting RF

Decay Ring

Two racetrack rings to different baselines
 3000–5000 km and 7000–8000 km
 Each capable of both signs simultaneously
 0.1/γ RMS divergence
 10²¹ "useful" decays per 10⁷ s
 100 ns between bunch trains (detector)

Decay Ring Diagnostics

- OCurrent measurement to 0.1%
- Polarimeter using decay electrons for energy/polarization measurement
- In-beam divergence measurement
 Precise method not defined

