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Introduction

The low energy neutrino factory was proposed as a next-generation
long-baseline experiment in the scenario that 013 is large.

S. Geer, O. Mena, S. Pascoli, 'A Low energy neutrino factory for large 013’

Motivation: The oscillation spectrum for energies < 5 GeV is very
rich at ~ 1300 km, providing sensitivity to 813, 0, the mass
hierarchy and 653.

Talk outline:

@ The experiment

@ Physics of neutrino oscillations

@ Optimisation of the setup

@ Comparison with other experiments

@ Sensitivity to non-standard interactions

@ Conclusions.



Create an intense source of p*.

Cool the p* = 70% increase
in flux.

Accelerate them to energies of
E, ~5 GeV.

Inject into a storage ring where
the muons decay:
iVe('Ve)'Vu(Vu)
Detect the neutrinos at a
baseline of 1300 km (FNAL to
DUSEL).
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Overview of the low energy neutrino factory

@ Use a magnetized totally active
scintillating detector (TASD)
or liquid argon (LAr) detector.

@ Magnetization is achieved
through a magnetic cavern
(superconducting transmission
lines).

@ These detectors can detect e®
and pt
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Detectors: 20 kton TASD

For the detector we consider a magnetized totally active
scintillating detector (TASD):

1 GeV
1 GeV

o u¥ detection efficiency of 73% < 1 GeV and 94%

o eT detection efficiency of 37% < 1 GeV and 47%

@ Background of 1073 on the (\_/L appearance and

disappearance channels

Vv

@ Background of 1072 on the (\_/l appearance channel

@ Detector fiducial mass of 20 kton
@ Energy resolution, dE/E, of 10%.



Detectors: 100 kton LAr

Alternatively, a 100 kton liquid argon (LAr) detector could be
used. To allow for uncertainties in its performance consider a range
of experimental parameters:

Conservative | Optimistic
Efficiency - all channels 80% 80%
Systematics 5% 2%
Energy resolution - 5% 5%
QE events
Energy resolution - 20% 10%
non-QE events
Background on v, 5x 1073 1x10°3
(dis)appearance channels
Background on v, 0.8 1x1072
appearance channels




Physics of LBL v oscillations

@ The ‘golden channel’ is the v, — v, channel:

A. Cervera et al., ‘Golden measurements at a neutrino factory’
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@ This channel contains information on all the parameters we
want to measure.

@ Information is extracted by looking at the shape of the
oscillation spectrum.



Physics of LBL v oscillations
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@ 013 controls the amplitude of the oscillation = high statistics.

@ CP violation is a low energy effect = detector with low energy
threshold.

@ Hierarchy determined at high energy = long baseline.



Degeneracies

Neutrino oscillation experiments suffer from the problem of
degeneracies: data can be fitted to different combinations of (613,
5, sign[Am3]).

= This severely weakens the precision of measurements.
Solutions:

@ Combine experiments with different baselines

@ Use a second detector and baseline.



Degeneracies

Solutions utilised by the LENF:

@ Obtain and combine information from different channels:

The degenerate solutions for each channel appear in different
regions in the 013, 8, sign[Am3;] plane.

= Degenerate solutions from one channel are eliminated by
the information from a complementary channel.

@ Obtain information over a range of energies:

Complementary information can be obtained from the first
and second oscillation maxima.



Optimisation of the LENF setup

Optimisation studies have been performed, maximising sensitivities
to the standard oscillation parameters 013, & and sign[Am3,].

We have studied the following:

@ Muon energy, E,
@ Statistics (flux)
@ Energy resolution

@ Addition of the platinum channel (v, — V).



Optimising the muon energy

@ Need to maximize the oscillation signal (events < 3 GeV), and
minimize the non-oscillating (higher energy) background.

@ v, energy spectrum:
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@ The optimal muon energy is E, ~ 4.5 GeV.



The platinum channel

@ If the setup is not optimized, the (w'/()e appearance channel

increases sensitivity to 013, & and the mass hierarchy (left).

@ With optimized E,,, high statistics and energy resolution, the
additional channel helps only with the hierarchy determination

(right).
4 GeV, 5.0 x 1020 decays, dE/E = 30% 4.5 GeV, 1.4x10?! decays, dE/E = 10%
0 P
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High statistics are vital.




Statistics

One advantage of the LENF is that it can obtain a very high flux:

@ 1.4 x 10%! muon decays per year, per polarity

C. Ankenbrandt et al. FERMILAB-PUB-09-0010APC (2009)

@ 2 x 107 operational seconds per year (twice that of other LBL
experiments)

@ Running for 10 years
@ = Total of 2.8 x 10?? decays.

The golden and platinum channels are statistics limited, so a high
flux is essential.

To make a fair comparison with other experiments, halve the LENF
flux so that the operational time is the same.



Results: 30 0:3 discovery potential

Compare with HENF, WBB, and different
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Results: 30 CP discovery potential

Compare with HENF, WBB,
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Results: 30 hierarchy sensitivity
and different .

Compare with HENF, WBB,
1.0 ; i ,
| — LENFLAr i !
------- LENFTASD ! /
osf — N ¥ £
R 4Ion BB i [
[ - - -BB 100 ,’
o
< 06 __ wEB |
s L /
= i /
E o4 | |
& 04r | i
1
| |
0.2} i
; i
0.0! "I !
107 107 1073 1072 107

sin® 2613

GLoBES 3.0



Sensitivity to 093

8,3 [degrees]

We are also interested in being able to measure the deviation of
023 from 7t/4 (left), and in determining the octant (> or < 71/4)

(right).
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Identifying the octant

Can exclude maximal mixing at 3¢ for 053 < 43° and = 47°.
Can identify the octant for 853 < 37° and = 53°.



Variation of sensitivities with exposure

Using a 20 kton TASD, the LENF has a total exposure of
1.4 x 10%! decays x 2 polarities x 10 years x 20 kton
= 5.6 x 10?3 kton decays.

We have studied how the performance is affected by the exposure.

e.g. Look at the 1o error in the measurement of & as a function of
exposure:



Variation of sensitivities with exposure

Systematics and backrounds No systematics or backgrounds
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@ Sharp increase in precision by having an exposure above
3 x 10?3 kton decays.
o Effect of systematics and backgrounds is to effectively halve
the exposure.



Sensitivity to non-standard interactions

The LENF has leading order sensitivity to the NSI parameters .,

and eer:
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Sensitivity to non-standard interactions

The addition of the platinum channel enhances the sensitivity to
NSI's.

Simulate e = €er = 0 and look at the 68%, 90% and 95%
confidence level contours in the 813 — ¢ plane:
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Can obtain an upper bound of ~ 102 on ¢, and €. at 90% CL.
(IDS-NF will have sensitivity down to ~ 1073).




@ We have simulated the following LENF setup, optimised for
measuring 013, & and the mass hierarchy:

L = 1300 km, E, = 4.5 GeV, 1.4 x 10%! ut decays per year
for 10 years.

@ Using either a 20 kton TASD or 100 kton LAr detector, the
LENF has excellent sensitivity to 813 and CP violation down

to sin(2013) ~ 10~*, and to the mass hierarchy for
sin2(2613) > 1073,

@ The LENF also has good sensitivity to 023 and to the NSI
parameters ., and eer.



