The Low Energy Neutrino Factory: Physics Performance

Tracey Li IPPP, Durham University

4th IDS-NF Meeting Tata Institute of Fundamental Research, Mumbai 12th October 2009

In collaboration with: Alan Bross, Malcolm Ellis, Enrique Fernández-Martínez, Steve Geer, Olga Mena=and=Silvia Pascoli ≅ ∽ ৭.০ The low energy neutrino factory was proposed as a next-generation long-baseline experiment in the scenario that θ_{13} is large.

S. Geer, O. Mena, S. Pascoli, 'A Low energy neutrino factory for large $\theta_{13}{\,}'$

Motivation: The oscillation spectrum for energies $\lesssim 5$ GeV is very rich at ~ 1300 km, providing sensitivity to θ_{13} , δ , the mass hierarchy and θ_{23} .

Talk outline:

- The experiment
- Physics of neutrino oscillations
- Optimisation of the setup
- Comparison with other experiments
- Sensitivity to non-standard interactions
- Conclusions.

Overview of the low energy neutrino factory

- Create an intense source of μ^{\pm} .
- Cool the $\mu^{\pm} \Rightarrow$ 70% increase in flux.
- Accelerate them to energies of $E_{\mu} \sim 5$ GeV.
- Inject into a storage ring where the muons decay: $\mu^{\pm} \rightarrow e^{\pm} \nu_e(\bar{\nu}_e) \bar{\nu}_{\mu}(\nu_{\mu})$
- Detect the neutrinos at a baseline of 1300 km (FNAL to DUSEL).

Overview of the low energy neutrino factory

- Use a magnetized totally active scintillating detector (TASD) or liquid argon (LAr) detector.
- Magnetization is achieved through a magnetic cavern (superconducting transmission lines).
- These detectors can detect e^{\pm} and μ^{\pm} \Rightarrow access to the $(\bar{\mathbf{v}}^{)}_{\mu} \rightarrow (\bar{\mathbf{v}}^{)}_{e}$ channel as well as $(\bar{\mathbf{v}}^{)}_{e} \rightarrow (\bar{\mathbf{v}}^{)}_{\mu}$ and $(\bar{\mathbf{v}}^{)}_{\mu} \rightarrow (\bar{\mathbf{v}}^{)}_{\mu}$.

For the detector we consider a magnetized totally active scintillating detector (TASD):

- μ^\pm detection efficiency of 73% < 1~GeV and 94% $\geqslant 1~\text{GeV}$
- e^{\pm} detection efficiency of 37% < 1 GeV and 47% $\geqslant 1$ GeV
- \bullet Background of 10^{-3} on the ${}^{(}\bar{\nu}_{\mu}^{)}$ appearance and disappearance channels
- Background of 10^{-2} on the $(ar{
 u}_e)$ appearance channel
- Detector fiducial mass of 20 kton
- Energy resolution, dE/E, of 10%.

Alternatively, a 100 kton liquid argon (LAr) detector could be used. To allow for uncertainties in its performance consider a range of experimental parameters:

	Conservative	Optimistic
Efficiency - all channels	80%	80%
Systematics	5%	2%
Energy resolution -	5%	5%
QE events		
Energy resolution -	20%	10%
non-QE events		
Background on $ u_{\mu}$	$5 imes 10^{-3}$	$1 imes 10^{-3}$
(dis)appearance channels		
Background on $ u_e$	0.8	$1 imes 10^{-2}$
appearance channels		

Physics of LBL u oscillations

• The 'golden channel' is the $\nu_e \rightarrow \nu_\mu$ channel:

A. Cervera et al., 'Golden measurements at a neutrino factory'

$$\begin{aligned} P_{\nu_e \to \nu_{\mu}} &= s_{213}^2 s_{23}^2 \sin^2(\frac{\Delta m_{31}^2 L}{4E} - \frac{AL}{2}) \\ &+ s_{213} \alpha s_{212} s_{223} \frac{\Delta m_{31}^2 L}{2EA} \sin(\frac{AL}{2}) \sin(\frac{\Delta m_{31}^2 L}{4E} - \frac{AL}{2}) \times \\ &\quad \cos(\delta - \frac{\Delta m_{31}^2 L}{4E}) \\ &+ \alpha^2 c_{23}^2 s_{212}^2 (\frac{\Delta m_{31}^2 L}{2EA})^2 \sin^2(\frac{AL}{2}) \end{aligned}$$

- This channel contains information on all the parameters we want to measure.
- Information is extracted by looking at the shape of the oscillation spectrum.

Physics of LBL ν oscillations

- θ_{13} controls the amplitude of the oscillation \Rightarrow high statistics.
- CP violation is a low energy effect ⇒ detector with low energy threshold.
- Hierarchy determined at high energy \Rightarrow long baseline.

Neutrino oscillation experiments suffer from the problem of degeneracies: data can be fitted to different combinations of $(\theta_{13}, \delta, \text{sign}[\Delta m_{31}^2])$.

 \Rightarrow This severely weakens the precision of measurements.

Solutions:

- Combine experiments with different baselines
- Use a second detector and baseline.

Solutions utilised by the LENF:

• Obtain and combine information from different channels:

The degenerate solutions for each channel appear in **different** regions in the θ_{13} , δ , sign $[\Delta m_{31}^2]$ plane.

 \Rightarrow Degenerate solutions from one channel are eliminated by the information from a complementary channel.

• Obtain information over a range of energies:

Complementary information can be obtained from the first and second oscillation maxima.

Optimisation studies have been performed, maximising sensitivities to the standard oscillation parameters θ_{13} , δ and sign[Δm_{31}^2].

We have studied the following:

- Muon energy, E_{μ}
- Statistics (flux)
- Energy resolution
- Addition of the platinum channel $(\nu_{\mu} \rightarrow \nu_{e})$.

Optimising the muon energy

- Need to maximize the oscillation signal (events \leq 3 GeV), and minimize the non-oscillating (higher energy) background.
- ν_µ energy spectrum:

• The optimal muon energy is $E_{\mu} \sim 4.5$ GeV.

The platinum channel

- If the setup is not optimized, the ^(v̄)_e appearance channel increases sensitivity to θ₁₃, δ and the mass hierarchy (left).
- With optimized E_μ, high statistics and energy resolution, the additional channel helps only with the hierarchy determination (right).

4 GeV, 5.0×10^{20} decays, dE/E = 30%

GLoBES 3.0

High statistics are vital.

Statistics

One advantage of the LENF is that it can obtain a very high flux:

• 1.4×10^{21} muon decays per year, per polarity

C. Ankenbrandt et al. FERMILAB-PUB-09-0010APC (2009)

- 2×10^7 operational seconds per year (twice that of other LBL experiments)
- Running for 10 years
- \Rightarrow Total of 2.8 \times 10²² decays.

The golden and platinum channels are statistics limited, so a high flux is essential.

To make a fair comparison with other experiments, halve the LENF flux so that the operational time is the same.

Results: $3\sigma \theta_{13}$ discovery potential

GLoBES 3.0

Results: 3σ CP discovery potential

GLoBES 3.0

Results: 3σ hierarchy sensitivity

Compare with **HENF**, WBB, T2HK and different β -beams.

GLoBES 3.0

Sensitivity to θ_{23}

We are also interested in being able to measure the deviation of θ_{23} from $\pi/4$ (left), and in determining the octant (> or $< \pi/4$) (right).

GLoBES 3.0

GLoBES 3.0

Can exclude maximal mixing at 3σ for $\theta_{23} \lesssim 43^{\circ}$ and $\gtrsim 47^{\circ}$. Can identify the octant for $\theta_{23} \lesssim 37^{\circ}$ and $\gtrsim 53^{\circ}$. Using a 20 kton TASD, the LENF has a total exposure of 1.4×10^{21} decays \times 2 polarities \times 10 years \times 20 kton = 5.6×10^{23} kton decays.

We have studied how the performance is affected by the exposure.

e.g. Look at the 1σ error in the measurement of δ as a function of exposure:

Variation of sensitivities with exposure

GLoBES 3.0

GLoBES 3.0

- Sharp increase in precision by having an exposure above 3×10^{23} kton decays.
- Effect of systematics and backgrounds is to effectively halve the exposure.

Sensitivity to non-standard interactions

The LENF has leading order sensitivity to the NSI parameters $\varepsilon_{e\mu}$ and $\varepsilon_{e\tau}$:

(ロ) 《母) 《臣) 《臣) 三 三 のへで

Sensitivity to non-standard interactions

The addition of the platinum channel enhances the sensitivity to NSI's.

Simulate $\varepsilon_{e\mu} = \varepsilon_{e\tau} = 0$ and look at the 68%, 90% and 95% confidence level contours in the $\theta_{13} - \varepsilon$ plane:

MonteCUBES MonteCUBES Can obtain an upper bound of $\sim 10^{-2}$ on $\varepsilon_{e\mu}$ and $\varepsilon_{e\tau}$ at 90% CL. (IDS-NF will have sensitivity down to $\sim 10^{-3}$).

 We have simulated the following LENF setup, optimised for measuring θ₁₃, δ and the mass hierarchy:

L = 1300 km, $E_{\mu}=4.5$ GeV, $1.4\times10^{21}~\mu^{\pm}$ decays per year for 10 years.

- Using either a 20 kton TASD or 100 kton LAr detector, the LENF has excellent sensitivity to θ_{13} and CP violation down to $\sin^2(2\theta_{13}) \simeq 10^{-4}$, and to the mass hierarchy for $\sin^2(2\theta_{13}) > 10^{-3}$.
- The LENF also has good sensitivity to θ_{23} and to the NSI parameters $\varepsilon_{e\mu}$ and $\varepsilon_{e\tau}$.