Current and future status of θ_{13}

Fanny Dufour, October 17th 2011 IDS-NF

1

Monday, October 17, 2011

Outline

***** Implication of θ₁₃ results

- * for CP violation
- * for mass hierarchy

* Current θ₁₃ results

- * Accelerators
- * Global fit

Future θ₁₃ results

- * Reactors
- * Nova

***** What if θ₁₃ is big ?

* Summary

Very inspired from T. Kobayashi at ICFA 2011

Where does θ_{13} matter?

$$P[\nu_{\mu}(\bar{\nu}_{\mu}) \rightarrow \nu_{e}(\bar{\nu}_{e})] = \frac{\sin^{2} 2\theta_{13} s_{23}^{2} \sin^{2}(\phi_{31}) - 1/2 s_{12}^{2} \sin^{2} 2\theta_{13} s_{23}^{2} (2\phi_{21}) \sin(2\phi_{31})}{+ 2 J_{r} \cos \delta(2\phi_{21}) \sin(2\phi_{31})} + 4 J_{r} \sin \delta(2\phi_{21}) \sin^{2}(\phi_{31})}$$
 Vacuum

$$\pm \cos 2\theta_{13} \sin^{2} 2\theta_{13} s_{23}^{2} \frac{(4 Ea(x))}{(\Delta m_{31}^{2})} \sin^{2} \phi_{31}}{(\Delta m_{31}^{2})}$$
 Matter Effect

$$\pm \frac{(a(x)L)}{2} \sin^{2} 2\theta_{13} \cos 2\theta_{13} s_{23}^{2} \sin(2\phi_{31})}{+ c_{23}^{2} \sin^{2} 2\theta_{12}(\phi_{21})^{2}}$$
 Solar term

$$= \frac{(a(x) - 2)}{2} \sin^{2} 2\theta_{12}(\phi_{21})^{2}$$
 Solar term

$$= CP \text{ terms.}$$
 $J_{r} (= c_{12} s_{12} c_{13}^{2} s_{13} c_{23} s_{23})$

Mass hierarchy terms.

- Reactor experiments
 Reno
 Double Chooz
 Daya Bay
- * Accelerator experiments
 * T2K
 * Minos

* Global fits

T2K results - 6 candidates

Selection Step Background Obser vation Beam NC $v_{\mu}CC$ v_{e} No OD signal (fully contained: 121 FC) Vertex in SK fiducial volume 52 3.0 18 88 (distance from ID wall > 2m) One ring 5.7 31 1.9 41 e-like ring 1.9 3.7 1.0 8 Electron energy > 100 MeV1.9 7 0.7 3.2 No delayed electron signal 2.8 0.1 1.6 6 Invariant mass of 1 e-like ring + 0.04 0.8 1.1 6 additional forced-reconstructed elike ring $M_{inv} < 105 MeV/c^2$ Reconstructed neutrino energy 0.03 0.8 0.6 6 Ev<1250MeV

T2K - Allowed regions

PRL 107, 041801 (2011)

Best fit results is right around Chooz 90% CL upper bound (sin²($2\theta_{13}$)= 0.15)

<u>at $\delta_{CP} = 0$ </u>: sin²(2θ₁₃)= 0.11 for normal mass hierarchy

 $0.03 < \sin^2(2\theta_{13}) < 0.28$

 $sin^2(2\theta_{13}) = 0.14$ for inverted mass hierarchy $0.04 < sin^2(2\theta_{13}) < 0.34$

T2K - Sensitivities

We aim to have:

<u>We have:</u>**0.07** [MWx10⁷s] = 0.143e21 pot

By Summer 2013: ~0.5 [MWx10⁷s] ~ 1e21pot *Conclude non-zero* θ_{13} > 5 sigma for present T2K central value

Within a few years : ~ 1 [MWx10⁷s] ~ 2e21pot $> 3 sigma for sin^2 2\theta_{13} > 0.04$

Approved goal : **3.75** [MWx10⁷s] ~ 8e21pot > 3 sigma for $sin^2 2\theta_{13} > 0.02$

* J-PARC has not been operated since Mar. 11, 2011 because of the earthquake.

- * Intensive recovery works are on-going
- * We will resume J-PARC operation in Dec. 2011
 * First, LINAC will start operation on Dec. 12, 2011
- * We plan to have >2 "cycle"(~month) beam for users within JFY2011 (by the end of March 2012)
- In FY2012 (April 2012 March 2013) J-PARC plan to operate fully (~9month) (budget requested)
- * LINAC energy recovery from 181MeV to 400MeV originally scheduled in 2012 was delayed to start July 2013
 - * User's needs to take longer beam after long shutdown by the earthquake
 - * Delay of preparation caused by earthquake

MINOS - Overview

- * FNAL 120GeV Main Injector Soudan mine (735km)
- $\boldsymbol{\ast}$ Horn-focused wide band v_{μ} beam
- * (magnetized)Iron-scintillator sampling calorimeter
 5.400tone @ for 000tone @ need

5,400tons @ far, 980tons @ near * Taking data > 6yrs

* 8.2e20pot data w/ neutrino run is used for ne appearance search

MINOS - Results

T2K Central values

Global fit

- * Exclude $\theta_{13}=0$ at more than 3σ level
- * Best fit : sin²θ₁₃=0.021

Overall: most urgent & important task: EXPERIMENTALLY DEFINITELY conclude

Double Chooz

- * Far detector completed, started data taking since Apr. 13, 2011, >120 days w/ 75% physics data live
- Data taking w/ near det expected from early 201
- * Sin²2θ₁₃ sensitivity (90%CL)
 ~0.08 in half year, 0.03
 ultimately

* 6x2.95=17.4GW & 4x20t far/4x20t
near detectors's (1.6~2km)

* 4/8 detectors filled, 2 detector taking data

 Data taking with all detectors from Summer 2012

* sin²2θ₁₃ <0.03(0.02) at 3σ in 1(3) years</p>

NOvA

67 m 15.7 m

- 14 kt total mass, 70% scintillator
- 930 planes
- ~3 m water equivalent earth overburden of barite and concrete

* FNAL NuMI off-axis beam

- * Power upgrade 320 kW \rightarrow 700 kW
 - * Recycler: anti-proton → proton
 - * Rep cycle 2.2s \rightarrow 1.33s
- * New 14 kton liquid scintillator fine grained detector @810km
- * Far detector will complete and start full operation in 2014

NOvA Sensitivity

* Can measure large θ₁₃ (~T2K center) very soon

- For smaller θ₁₃ good competition
- * Have some sensitivity on mass hierarchy

If sin²2θ₁₃> ~0.01

Make conventional Multi-MW super beam long baseline experiments possible to explore CPV in lepton sector Although big step needed

IF not

Need "ideal" beam such as Neutrino Factory or beta beam to probe CPV

Personal opinion:

It seems until now everyone was very focus in getting down to the smallest θ_{13} possible...

Very careful study of systematics need to be performed if θ_{13} is as large as T2K leads to believe.

Figure 2 Compilation of 3σ CP sensitivities of future long baseline projects. Here the fraction of δ_{CP} where CP violation can be observed at 3 standard deviations is plotted as a function of θ_{13} . T2KK: T2K 1.66 MW beam to 270 kton fid volume Water Cherenkovs detectors in Japan (295km) and in Korea (1050 km)[10]; DUSEL: a WBB from Fermilab to a 300 kton WC in Dusel (1300km)[11]; SPL 4 GeV, EU-BB and BB+SPL curves stand for the CERN to Fréjus (130km) project [12]; NF baseline is the Neutrino Factory baseline (4000km and 7000km baselines) and NF Py+INO represents the concrete baseline from CERN to Pyhaslami mine in Finland (2285 km) and to INO in India (7152 km)[13].

* Quest for non-zero θ_{13} is turning around final corner

- T2K detected first indication of ve appearance at 2.5σ significance
 * 0.03(0.04)<sin²2θ₁₃<0.28(0.34) (inverted hierarchy)
- * MINOS presented consistent results
- * New reactor experiments are getting online
- NOvA will come in 2014
- * Discovery of finite θ_{13} will come very soon (hopefully)!
- * Large θ₁₃ makes possible to explore CPV with upgraded >MW beam and huge high sensitivity detector BUT precise systematics studies need to be performed