Neutrino Factory sensitivity at large θ_{13}

Patrick Huber

Center for Neutrino Physics at Virginia Tech

7th IDS-NF plenary meeting
October 17-19, 2011, Virginia Tech, Arlington

The Issue

If $\sin^2 \theta_{13} > 0.01$, as hinted by recent data, what are the implications for a Neutrino Factory?

I break this question down into the following more focused questions:

- Will the mass hierarchy have been determined by someone else?
- Are new experiments beyond NO ν A and T2K necessary?
- Are superbeams enough?
- Optimization?
- Staging?

 $heta_{f 13}$

FAPP θ_{13} will be known to very high accuracy

If the current hints are true, θ_{13} will be accurately measured by Double Chooz, RENO, Daya Bay and T2K within a year or so

At $\sin^2 2\theta_{13} = 0.1$ the measurement error at T2K will be 10%

At $\sin^2 2\theta_{13} = 0.1$ the measurement error at Daya Bay will be <5%

Can beams improve this result?

Mass hierarchy

90% CL, combines T2K, NO ν A, Daya Bay, Double Chooz and RENO At this CL MINOS and T2K have discovered $\theta_{13} \neq 0!$

At 3σ this plot would be essentially empty!

PH, M. Lindner, T. Schwetz, W. Winter, JHEP 11 044 (2009), arXiv:0907.1896.

CPV without new experiments?

PH, M. Lindner, T. Schwetz, W. Winter, JHEP 11 044 (2009), arXiv:0907.1896.

Barely reaches 3σ for mass hierarchy, and this is the most favorable $\delta_{CP}!$

CPV without new experiments?

PH, M. Lindner, T. Schwetz, W. Winter, JHEP 11 044 (2009), arXiv:0907.1896.

Includes Project X and T2K running at 1.7 MW.

Are superbeams enough?

Mass hierarchy works only at 3σ in the upper half of the current indications.

Are superbeams enough?

SB reach CPF of 0.7-0.75
NF reaches CPF of 0.85-0.9

MIND LE – 100 kt MIND at 2000km and 10GeV

NF still best for all values of θ_{13} !

Are superbeams enough?

$$\Delta\delta \simeq 1-\text{CPF}$$

 $\text{SB }\Delta\delta = 90^{\circ} - 120^{\circ}$
 $\text{NF }\Delta\delta = 40^{\circ} - 52^{\circ}$

T2HK taken from K. Abe et al., arXiv:1109.3262

This requires a more detailed analysis ...

CP precision

PH, M. Lindner, W. Winter JHEP 05 020 (2005).

This is an example using a 50GeV NF with 20GeV detection threshold, needs to be updated.

Optimization – one baseline

At large θ_{13} , using MIND and one baseline, optimum is at 2200-2300 km and 10-14 GeV.

CPF 0.77-0.84

S. Agarwalla, PH, J. Tang, W. Winter JHEP 1101 120 (2011).

Optimization – 2nd baseline?

At large θ_{13} , using MIND and one baseline, optimum is at 2300-2600 km and 10-15 GeV.

CPF 0.77-0.84 – identical to one baseline setup

Only 1 baseline needed!

S. Agarwalla, PH, J. Tang, W. Winter JHEP 1101 120 (2011).
P. Huber – VT-CNP – p. 12

Staging

Traditional staging scenarios evolve from low energy, 1 baseline setups to high energy, 2 baseline setups. *e.g.* J. Tang, W. Winter, Phys.Rev. D81 (2010) 033005.

At large θ_{13} , we only want low energy and 1 baseline!

Remaining degrees of freedom

- Luminosity
- Detector technology
 - iron vs fully active
 - magnetized vs non-magnetized

Staging – luminosity

1/20-1/10 of luminosityNF as good as the best SB

1/50-1/20 of luminosity - NF on par with LBNE

⇒ Start somehwere between 1/50 and 1/20 and work your way to full luminosity

Staging – luminosity

Assume 1/25 of the default luminosity, gains split equally between detector and accelerator

- proton beam power of $4 \, \text{MW} \rightarrow 800 \, \text{kW}$
- fiducial mass of MIND of $100 \, \mathrm{kt} \rightarrow 20 \, \mathrm{kt}$

This opens new possibilities

- Maybe horns instead of solenoids can be used
- Maybe existing proton infrastructure can be used
- Maybe 20 kt of LAr can be magnetized

LBNE + Project X cost about \$2 billion – can we make a 1/25th-luminosity NF for a similar price?

Summary

Comparison with SB

- Will the mass hierarchy have been determined w/o new experiments? not likely (requires Project X)
- Are SB likely to discover CPV yes, provided they are truly super (which LBNE is not)
- Can SB do precision measurements not obvious
- Can NF do significantly better YES

Consequences for NF

- MIND LE optimal at large θ_{13}
- 1/25th of the luminosity is sufficient for an entry level facility to match the capabilities of SB

Open questions

PPEG & Detector WG

- Study precision
 - Systematics modeling including near detector
 - Select (or develop) performance indicators
 - Optimize for large θ_{13}
- Compare with precision of other facilities

Accelerator WG

- Alternative proton beam scenarios, e.g. 120 GeV
- 1 MW targets
- 5-10GeV muon beam

How cheap and fast can a 1/25th-luminosity NF be?