UK CMS Upgrade Oversight Committee

27 May 2015

University of Bristol
Brunel University London
Imperial College London
Rutherford Appleton Laboratory
Overview

• Snapshots of LHC & CMS status
 – CMS and LHC are well into recommissioning phase

• Summary of UK upgrade project
 – Recent WP progress

• Finances
2015 LHC schedule

- Generally good progress
 - few week slippage compared to Nov 2014
 - physics foreseen from 1 June
 - but..

Table: 2015 LHC schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>April</th>
<th>May</th>
<th>June</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Tu</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>We</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>Th</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Fr</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Sa</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>Su</td>
<td>32</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
</tbody>
</table>

As of 4 May

- Start LHC commissioning with beam
- Recommissioning with beam
- Machine checkout
- 1st May
- Ascension
- Special physics run
- TS1
- Scrubbing for 50 ns operation

Table: 2015 LHC schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>July</th>
<th>August</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>27</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>Tu</td>
<td>28</td>
<td>31</td>
<td>36</td>
</tr>
<tr>
<td>We</td>
<td>Leap second</td>
<td>MD 1</td>
<td>TS2</td>
</tr>
<tr>
<td>Th</td>
<td></td>
<td></td>
<td>MD 2</td>
</tr>
<tr>
<td>Fr</td>
<td></td>
<td>Intensity ramp-up with 50 ns beam</td>
<td>Intensity ramp-up with 25 ns beam</td>
</tr>
<tr>
<td>Sa</td>
<td></td>
<td></td>
<td>Jeune G</td>
</tr>
<tr>
<td>Su</td>
<td></td>
<td></td>
<td>End physics (planning)</td>
</tr>
</tbody>
</table>

Table: 2015 LHC schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo</td>
<td>40</td>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>Tu</td>
<td>41</td>
<td>44</td>
<td>51</td>
</tr>
<tr>
<td>We</td>
<td>42</td>
<td>45</td>
<td>52</td>
</tr>
<tr>
<td>Th</td>
<td>43</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>Fr</td>
<td>44</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Sa</td>
<td>45</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Su</td>
<td>46</td>
<td>49</td>
<td></td>
</tr>
</tbody>
</table>

2015 LHC schedule

- Start LHC commissioning with beam
- Scrubbing for 50 ns operation
- Scrubbing for 25 ns operation
- Technical PDO
- Xmas
LHC news

• Good news:
 – beams routinely ramped at 6.5 Tev
 – Beam ramped and squeezed at 40 CM
 – Injected nominal intensity bunches

• Not so good news:
 – Repeated UFO events in one sector (15R8) traced to a ULO (Unidentified Lying Object) which is located within one specific magnet. One hypothesis is that it might be a piece of insulation material
 – They are still trying to fully explore what can be done to mitigate this: plan is to find a sweet spot to steer the beam around the occlusion. This approach allows pursuing the beam commissioning program so far

CERN Bulletin 22 May: no beam losses at obstacle in latest intensity tests
L1 trigger

• Legacy trigger timed in, generally working well and ready for collisions
 – ECAL OSLBs installed and working (splits paths for legacy and upgrade)
 – Trigger menu for 50ns operation installed at P5
 – DQM plots are available, including for Calo Stage-1

• Remaining tasks
 – HCAL splitters to be installed (this month)
 – Testing of HF μHTRs to RCT input. Starting.
 – RPC splitters installation in progress (complete this month)
L1: stage 1 calo trigger upgrade

- RCT/ORSCs installed, cabling and patch panel done, MP7 crate installed
- Stage-1 algorithms for pp and firmware done. Runs in one MP7 processor. Testing matches emulator.
- Algorithms and firmware for HI running in progress
- DAQ link from MP7 via AMC13 tested successfully at full bandwidth. Some work remaining to integrate with Stage-1 firmware
- Stage-1 system successfully runs in parallel with legacy trigger at P5 during data-taking using GT test crate
- Stage-1 system has successfully triggered CMS through GT at P5 at rate similar to legacy
L1 CALO Trigger Upgrade: status

• Status of data link splitting for parallel operation in 2015
 – ECAL: All fibers from OSLB to Layer-1 patch panel installed, with 16/576 links tested to Layer-1
 – HCAL: awaiting HB/HE splitters (1st batch shipped). First crate of HB/HE μHTRs installed at P5 and remainder by end of May
 – HCAL fibers (144) to be laid out this week and testing with the trigger should commence afterward

• Status of calo trigger processor installation and testing
 – All required CTP7 boards for layer-1 at CERN and 18/36 already installed.
 – Layer-2 MP7 have been under use for testing Layer-1, uGT, algorithms
 – Pattern tests of 1/9 of layer-1/layer-2 interconnections in progress
 – Pattern tests from Layer-1 → Layer-2 → μGT to commission energy sums expected by end of May
Forward calorimeter decision

- High Granularity option chosen mainly for risk reasons
 - employs similar technology to Tracker (silicon, CO₂, ASICs)
 - T. Virdee interim PM
 - possible UK role under consideration
 - significant supplementary funding via ERC, plus PRD post

Silicon-tungsten/lead/copper EM (25 X₀, 1λ) and silicon/brass front hadron (3.5λ) calorimeter
6.2M channels, pad sizes 1cm² or 0.5 cm² depending on η
Scintillator-brass backing calorimeter (5.5λ, low radiation environment)
UK R&D status
Last 6 months

• WP2:
 – continued steady progress with CBC3 design
 • expected CBC3 submission Feb 2016 in MOSIS run
 – First series of FC7 production complete but unexpected problems

• WP3: progress towards installation of TDR trigger
 – UK Stage-1 commitments essentially complete
 – UK Layer-2 for 2016 trigger in place and being commissioned
 • details to follow

• WP2 & WP3: progress on TMTT studies

• CMS TP delayed to LHCC to June 2015
 • decision on forward calorimetry made April 2015, endorsed CB 8 May
Overview of CBC activities

• CBC2 characterization complete (reported last time)
 – including ionizing irradiation (to 180 Mrads!) and SEU testing
 – results informing CBC3 design

• CBC2 based module tests continue
 – mini-module with irradiated sensors in test beam in June
 – full-size module test beam in November

• CBC3 design now in full flow
 – all modifications and additional features agreed with CMS systems team collaborators
 – specification document complete and circulated
CBC3 status

design work progressing

main new features are:

- stub address generation & transmission off-chip @ 320 Mbps
- longer L1 pipeline (12.8 usec)
- higher L1 trigger rate capability (up to 1 MHz)

major new blocks are:

- stub gathering logic ➢ complete
- data packet assembly & transmission ➢ at advanced stage

review meetings held at key stages to monitor progress
CBC3 plan

- CBC3 design & production
- CBC3 in hand
- CBC3 test (& modules based on CBC3)
- CBC4 design & test engineering run
- modules based on CBC3 and concentrator ASIC
 (need to integrate DC-DC and link components)
- plan to submit CBC3 through MOSIS in February
 limited number of chips but ~ half the cost of full wafer run
 can expect chips in hand ~ May
 (small schedule slippage but have to comply with fixed submission dates)
Problems discovered in boards built for TCDS project

- upgraded CMS TTC system, on tight schedule

TCDS hardware status

- All TCDS boards are based upon the same μTCA motherboard - the FC7
 - Collaborative design between CERN and Imperial College
 - https://indico.cern.ch/event/299180/session/5/contribution/118
- 70 FC7s produced in 2014
- Installed in P5 since August 2014
 - 10 LPMs
 - 40 PIs
- Boards have started to fail since January 2015
 - Failure modes different for LPM & PI, but very similar for a given firmware build
Operational failures are accompanied with an increase in the current consumed in the FPGA core voltage.

Status on 14 April 2015:
- 8 boards with high current
- 4 broken
XADC powering schematic

with help from Xilinx failure analysis

Schematics pg.5

Follow layout rules of temp when routing DXP/DXN

should be powered from 1.8 V
FC7 current status

• Problem is now believed to be understood but proceeding with caution
 – simple repair to existing boards
 • however stressed boards likely to have been damaged
 – error corrected in layout for R2
 – design modified to be conservative in all respects
 – internal design review with CERN, and some outside experts, April
 – replacements underway
 • existing design, with correction for urgent needs (TCDS and pixel prototyping) reordered
 • R2 ready for submission very soon

• Some important lessons everywhere
 – listed in report
WP3 objectives and status

• Calorimeter trigger status
 – to be updated orally at meeting
 • review held April – report not yet issued
 • commissioning status (Stage-1 & TDR)
 • Plan B readiness

 – all MP7s required for UK commitments delivered
 • but some manufacturing issues and PCB material is under consideration for the future, as with the FC7
2016 Calorimeter Trigger Milestones

- **Milestones related to CTP7**
 - 25.10.2014 3 CTP7s at CERN
 - 15.11.2014 4 CTP7s at CERN (includes the previous)
 - 20.01.2015 8 CTP7s at CERN (includes the previous)
 - 28.01.2015 12 CTP7s at CERN (includes the previous)
 - 25.03.2015 28 CTP7s at CERN (includes the previous)
 - 08.04.2015 36 CTP7s at CERN (includes the previous)

- **Milestones related to commissioning of the trigger**
 - 16.01.2015 oSLB and HF uHTR systems commissioned
 - 19.01.2015 Layer-2 – Patch Panel – Layer-1 Connected to uGT
 - 25.11.2014 First Version of CTP7 firmware (incl. input playback)
 - 09.03.2015 Final Version of CTP7 firmware (except DAQ link)
 - 17.02.2015 Final design of Algorithms and data format defined
 - Decision to upgrade 2016 trigger inputs from ECAL and HCAL
 - 17.06.2015 B/E uHTR system connected to the trigger - Commissioned
 - 02.09.2015 System ready for parallel data taking
MP7 order status

- Following prototyping/pre-production, two orders of 16 boards
 - Prod-1: 16 delivered (Hapro) + 16 from Exception, essentially complete
 - a bit of a struggle with UK company
 - Hapro orders of 8 + 32 launched in 2014 (Prod-2 and Supp Prod-1)
 - assembly error with first 8, so delay
 - now complete
 - manufacturing error with pre-series cards of 32 order.
 - delay while new PCBs procured, delivery in August

<table>
<thead>
<tr>
<th>Project</th>
<th>Pre-prod</th>
<th>Prod-1</th>
<th>Supp Prod-1</th>
<th>Prod-2</th>
<th>Future req</th>
<th>Prod Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calo demux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trig Layer-2 &</td>
<td>9</td>
<td>25</td>
<td>5</td>
<td>4</td>
<td>12?</td>
<td>34-46</td>
</tr>
<tr>
<td>GT & GMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barrel Muon Track finder</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Stage-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLR</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total required</td>
<td>14</td>
<td>32</td>
<td>8</td>
<td>32</td>
<td>0</td>
<td>72-84</td>
</tr>
<tr>
<td>Orders</td>
<td>14</td>
<td>32</td>
<td>8</td>
<td>32</td>
<td>12?</td>
<td>72-84</td>
</tr>
<tr>
<td>Delivery</td>
<td>Done</td>
<td>Aug-Oct</td>
<td>Dec</td>
<td>Apr?</td>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
MP-Ultra: Successor to the MP7

- Successor to the MP7 based on Xilinx Ultrascale and Ultrascale+ FPGAs
- Up to 96+96 (Tx+Rx) links at up to 16Gbps: bandwidth > 1.5+1.5 Tbps
- 8Gb of RLDRAM3 in four independent banks
- PCIe form-factor – easier to manufacture than µTCA
- Two variants planned spanning 3-generations/families of FPGA:
 - 48-link variant – very low-cost with maximal logic/bandwidth ratio
 - 96-link variant (Ultrascale FPGA) – maximum bandwidth
 - 96-link variant (Ultrascale+ FPGA) – maximum bandwidth & logic
Track-trigger progress

• Now quite substantial UK-wide activity focusing on
 – simulations
 – algorithms for track finding in FPGA
 – firmware design
 – implementation in MP7 demonstrator system

• Target: working demonstrator by August
 – of course with limited objectives compared to final system
Layout of fully Time-Multiplexed Track-Trigger

- Focusing on demonstration of the concept
 - entire tracker could be read out by MP7-like processing cards
 - requires ~200 cards, segmented into 5 η regions

- module sharing
 - ≤ 2 regions
 - simpler architecture
 - no deghosting

- sharing defined by large luminous region in z

- feed time-multiplexed data to regional processors
 - TM period of 24-36 BX possible using MP7s
Track-finding in FPGA

- Hardware requirements already feasible, but processing in FPGA very challenging
 - exploring Hough transform approach:
 - line in real space -> point in inverse space

- pipelined dataflow
 - natural with TM
 - matches FPGA needs

- find stubs in 2D
 - 2D histogram

- selection to reduce number of candidates

valid track where lines intersect
i.e. stubs which share the same (m,c)
Status of demonstrator

- Hardware exists in working form (from calo trigger)
 - adapt for track-trigger time slice
- Firmware implementation of Hough array
 - self-filling systolic array
 - integrating with infrastructure firmware
Finances

• Expenditure – no special issues
 – Staff expenditure essentially as foreseen
 • including slight ramp-up in RAL TD, matching our delivery plan
 – Travel also as foreseen – further LTA commitments under way

• Materials & equipment
 – WP2:
 • CBC3 manufacture early 2016
 – WP3:
 • For purchases via CERN (FC7 & MP7) direct invoicing to Imperial now working well
Conclusions

• Milestones
 – reported in document

• Risks
 – register revised
 – no new risks, but MP7 and FC7 issues have materialised

• Trigger project in crucial commissioning phase
 – SP team has been playing significant role
Further information
Limited to use current RCT and current GT

- Significant performance improvements possible in $e\gamma$, τ and jets
- Prototype processor cards and (new) oRSC cards to duplicate signals
- Retains data to legacy GCT for easy rollback with just reconfiguration